- 'model' option for error bars, showing Poisson quantiles (#14)
- Fix vmin/vmax for matplotlib >3.3, resume CI tests (#15)
- Hist1d.data_for_plot returns numbers used in error calculation
- Prevent object array creation (#12)
- Feldman-Cousins errors for Hist1d.plot (#10)
- Fix rebinning for empty histograms (#9)
- Fixes for #7 (#8)
- Correct step plotting at edges, other plotting fixes
- Histogram numpy structured arrays
- Fix deprecation warnings (#6)
- lookup_hist
- .max() and .min() methods
- percentile support for higher-dimensional histograms
- Improve Hist1d.get_random (also randomize in bin)
- Fix issue with input from dask
- Fix python 2 support
- Fix colorbar arguments to Histdd.plot (#4)
- percentile for Hist1d
- rebin method for Histdd (experimental)
- get_random for Histdd no longer just returns bin centers (Hist1d does stil...)
- lookup for Hist1d. When will I finally merge the classes...
- pandas.DataFrame and dask.dataframe support
- dimensions option to Histdd to init axis_names and bin_centers at once
- Remove matplotlib requirement (still required for plotting features)
- Fix small bug for >=3 d histograms
- get_random and lookup for Histdd. Not really tested yet.
- .std function for Histdd
- Fix off-by-one errors
- Several new histdd functions: cumulate, normalize, percentile...
- Python 2 compatibility
- Histdd functions sum, slice, average now also work
- Multidimensional histograms
- Axes naming
Correct various rookie mistakes in packaging... Hey, it's my first pypi package!
Initial release
- Hist1d, Hist2d
- Basic test suite
- Basic readme