This page provides basic tutorials about the usage of MMFashion
.
We provide testing scripts to evaluate a whole dataset (Category and Attribute Prediction Benchmark, In-Shop Clothes Retrieval Benchmark, Fashion Landmark Detection Benchmark etc.), and also some high-level apis for easier integration to other projects.
You can use the following commands to test a dataset.
python tools/test_*.py --config ${CONFIG_FILE} --checkpoint ${CHECKPOINT_FILE}
Examples:
Assume that you have already downloaded the checkpoints to checkpoints/
.
- Test a attribute predictor.
python tools/test_predictor.py \
--config configs/attribute_predict/roi_predictor_vgg_attr.py \
--checkpoint checkpoint/Predict/vgg/roi/latest.pth
- Test a in-shop clothes retriever.
python tools/test_retriever.py \
--config configs/retriever/roi_retriever_vgg.py \
--checkpoint checkpoint/Retrieve/vgg/latest.pth
- Test a landmark detector.
python tools/test_landmark_detector.py \
--config configs/landmark_detect/landmark_detect_vgg.py
--checkpoint checkpoint/LandmarkDetect/vgg/latest.pth
You can use the following commands to train a model.
python tools/train_*.py --config ${CONFIG_FILE}
Examples:
- Train a attribute predictor.
python tools/train_predictor.py \
--config configs/attribute_predict/roi_predictor_vgg_attr.py
- Train a in-shop clothes retriever.
python tools/train_retriever.py \
--config configs/retriever/roi_retriever_vgg.py
- Train a landmark detector.
python tools/train_landmark_detector.py \
--config configs/landmark_detect/landmark_detect_vgg.py