forked from 201518018629031/DeepSLRD
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Main_TD_RvNN_GCN.py
419 lines (374 loc) · 16.2 KB
/
Main_TD_RvNN_GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# -*- coding: utf-8 -*-
import sys
import logging
#logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
ch.setFormatter(formatter)
logger.addHandler(ch)
import TD_RvNN_torch
from gcn_models import GCN
import math
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from numpy.testing import assert_array_almost_equal
import time
import datetime
import random
from evaluate import *
import networkx as nx
import scipy.sparse as sp
import pickle as pkl
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_str',type=str, default='Twitter15',help='choose dataset, you can choose either "Twitter15" or "Twitter16"')
parser.add_argument('--fold_index',type=str, default='2',help='fold index, choose from 0-4')
parser.add_argument('--gcn_hidden', type=int, default=64, help='Number of gcn hidden units')
parser.add_argument('--gcn_dropout', type=float, default=0.5, help='GCN dropout rate (1 - keep probability)')
parser.add_argument('--gcn_lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--gcn_output',type=int, default=4, help='dimension of the user')
parser.add_argument('--cuda_id', type=int, default=0, help='Set the gpu id')
args = parser.parse_args()
torch.cuda.set_device(args.cuda_id)
obj = args.dataset_str # choose dataset, you can choose either "Twitter15" or "Twitter16"
fold = args.fold_index # fold index, choose from 0-4
tag = "_u2b"
vocabulary_size = 5000
hidden_dim = 100
Nclass = 4
Nepoch = 600
lr = 0.005
unit="TD_RvNN-"+obj+str(fold)+'-vol.'+str(vocabulary_size)+tag
treePath = './resource/data.TD_RvNN.vol_'+str(vocabulary_size)+'.txt'
trainPath = "./nfold/RNNtrainSet_"+obj+str(fold)+"_tree.txt"
testPath = "./nfold/RNNtestSet_"+obj+str(fold)+"_tree.txt"
labelPath = "./resource/"+obj+"_label_All.txt"
#the path graph imformation
graphPath = './ind_'+args.dataset_str+'.graph'
featuresPath = './ind_'+args.dataset_str+'.features'
tweetid2useridx = './ind_'+args.dataset_str+'.poster'
#floss = open(lossPath, 'a+')
def adjust_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
################################### tools #####################################
def str2matrix(Str, MaxL): # str = index:wordfreq index:wordfreq
wordFreq, wordIndex = [], []
l = 0
for pair in Str.split(' '):
wordFreq.append(float(pair.split(':')[1]))
wordIndex.append(int(pair.split(':')[0]))
l += 1
ladd = [ 0 for i in range( MaxL-l ) ]
wordFreq += ladd
wordIndex += ladd
#print MaxL, l, len(Str.split(' ')), len(wordFreq)
#print Str.split(' ')
return wordFreq, wordIndex
def loadLabel(label, l1, l2, l3, l4):
labelset_nonR, labelset_f, labelset_t, labelset_u = ['news', 'non-rumor'], ['false'], ['true'], ['unverified']
if label in labelset_nonR:
y_train = [1,0,0,0]
l1 += 1
if label in labelset_f:
y_train = [0,1,0,0]
l2 += 1
if label in labelset_t:
y_train = [0,0,1,0]
l3 += 1
if label in labelset_u:
y_train = [0,0,0,1]
l4 += 1
return y_train, l1,l2,l3,l4
def constructTree(tree):
## tree: {index1:{'parent':, 'maxL':, 'vec':}
## 1. ini tree node
index2node = {}
for i in tree:
node = TD_RvNN_torch.Node_tweet(idx=i)
index2node[i] = node
## 2. construct tree
for j in tree:
indexC = j
indexP = tree[j]['parent']
nodeC = index2node[indexC]
wordFreq, wordIndex = str2matrix( tree[j]['vec'], tree[j]['maxL'] )
#print tree[j]['maxL']
nodeC.index = wordIndex
nodeC.word = wordFreq
#nodeC.time = tree[j]['post_t']
## not root node ##
if not indexP == 'None':
nodeP = index2node[int(indexP)]
nodeC.parent = nodeP
nodeP.children.append(nodeC)
## root node ##
else:
root = nodeC
## 3. convert tree to DNN input
parent_num = tree[j]['parent_num']
ini_x, ini_index = str2matrix( "0:0", tree[j]['maxL'] )
#x_word, x_index, tree = tree_gru_u2b.gen_nn_inputs(root, ini_x, ini_index)
x_word, x_index, tree = TD_RvNN_torch.gen_nn_inputs(root, ini_x)
return x_word, x_index, tree, parent_num
################################# loas data ###################################
def loadData():
logger.info("loading tree label")
labelDic = {}
for line in open(labelPath):
line = line.rstrip()
label, eid = line.split('\t')[0], line.split('\t')[2]
labelDic[eid] = label.lower()
logger.info(len(labelDic))
logger.info("reading tree") ## X
treeDic = {}
for line in open(treePath):
line = line.rstrip()
eid, indexP, indexC = line.split('\t')[0], line.split('\t')[1], int(line.split('\t')[2])
parent_num, maxL = int(line.split('\t')[3]), int(line.split('\t')[4])
Vec = line.split('\t')[5]
if eid not in treeDic:
treeDic[eid] = {}
treeDic[eid][indexC] = {'parent':indexP, 'parent_num':parent_num, 'maxL':maxL, 'vec':Vec}
logger.info('tree no:%d'%len(treeDic))
logger.info("reading graph")
with open(graphPath, 'rb') as f:
if sys.version_info > (3, 0):
graph = pkl.load(f, encoding='latin1')
else:
graph = pkl.load(f)
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
logger.info("reading the features of graph node")
with open(featuresPath, 'rb') as f:
if sys.version_info > (3, 0):
features = pkl.load(f, encoding='latin1')
else:
features = pkl.load(f)
# features = features.tolil()
logger.info("reading the map of tweete to user in graph")
with open(tweetid2useridx, 'rb') as f:
if sys.version_info > (3, 0):
tw2useridx = pkl.load(f, encoding='latin1')
else:
tw2useridx = pkl.load(f)
graph_train = []
graph_test = []
logger.info("loading train set")
tree_train, word_train, index_train, y_train, parent_num_train, c = [], [], [], [], [], 0
l1,l2,l3,l4 = 0,0,0,0
for eid in open(trainPath):
#if c > 8: break
eid = eid.rstrip()
if eid not in labelDic: continue
if eid not in treeDic: continue
if len(treeDic[eid]) <= 0:
#print labelDic[eid]
continue
## 1. load label
graph_train.append(tw2useridx[eid])
label = labelDic[eid]
y, l1,l2,l3,l4 = loadLabel(label, l1, l2, l3, l4)
y_train.append(y)
## 2. construct tree
#print eid
x_word, x_index, tree, parent_num = constructTree(treeDic[eid])
tree_train.append(tree)
word_train.append(x_word)
index_train.append(x_index)
parent_num_train.append(parent_num)
#print treeDic[eid]
#print tree, child_num
#exit(0)
c += 1
logger.info('%d, %d, %d, %d'%(l1,l2,l3,l4))
logger.info("loading test set")
tree_test, word_test, index_test, parent_num_test, y_test, c = [], [], [], [], [], 0
l1,l2,l3,l4 = 0,0,0,0
for eid in open(testPath):
#if c > 4: break
eid = eid.rstrip()
if eid not in labelDic: continue
if eid not in treeDic: continue
if len(treeDic[eid]) <= 0:
#print labelDic[eid]
continue
## 1. load label
graph_test.append(tw2useridx[eid])
label = labelDic[eid]
y, l1,l2,l3,l4 = loadLabel(label, l1, l2, l3, l4)
y_test.append(y)
## 2. construct tree
x_word, x_index, tree, parent_num = constructTree(treeDic[eid])
tree_test.append(tree)
word_test.append(x_word)
index_test.append(x_index)
parent_num_test.append(parent_num)
c += 1
features = clear_data(features)
features = normalize(features)
features = torch.FloatTensor(features)
adj = preprocess_adj(adj)
adj = sparse_mx_to_torch_sparse_tensor(adj)
graph_train = torch.LongTensor(graph_train)
graph_test = torch.LongTensor(graph_test)
# logger.info('the graph_train:%s'%str(graph_train))
logger.info('the legth of graph_train:%s'%str(len(graph_train)))
logger.info('the legth of graph_test:%s'%str(len(graph_test)))
logger.info('%d, %d, %d, %d'%(l1,l2,l3,l4))
logger.info("train no:%d, %d, %d, %d, %d"%(len(tree_train), len(word_train), len(index_train),len(parent_num_train), len(y_train)))
logger.info("test no:%d, %d, %d, %d, %d"%(len(tree_test), len(word_test), len(index_test), len(parent_num_test), len(y_test)))
logger.info("dim1 for 0:%d, %d, %d"%(len(tree_train[0]), len(word_train[0]), len(index_train[0])))
logger.info("case 0:%s, %s, %s, %s"%(str(tree_train[0][0]), str(word_train[0][0]), str(index_train[0][0]), str(parent_num_train[0])))
#print index_train[0]
#print word_train[0]
#print tree_train[0]
return adj, features, graph_train, graph_test, tree_train, word_train, index_train, parent_num_train, y_train, tree_test, word_test, index_test, parent_num_test, y_test
def clear_data(mx):
mx[np.isnan(mx)] = 0.
colmax = np.max(mx, 0)
colmin = np.min(mx, 0)
res = (mx - colmin)/(colmax - colmin)
res[np.isnan(res)] = 0.
return res
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
# return sparse_to_tuple(adj_normalized)
return adj_normalized
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
##################################### MAIN ####################################
## 1. load tree & word & index & label
adj, features, graph_train, graph_test, tree_train, word_train, index_train, parent_num_train, y_train, tree_test, word_test, index_test, parent_num_test, y_test = loadData()
## 2. ini RNN model
t0 = time.time()
device = torch.cuda.is_available()
model = TD_RvNN_torch.RvNN(device, vocabulary_size, hidden_dim, args.gcn_hidden)
gcn_model = GCN(nfeat=features.shape[1],
nhid=args.gcn_hidden,
nclass=args.gcn_output,
dropout=args.gcn_dropout)
co_model = TD_RvNN_torch.RvNN_Co_GCN(hidden_dim+args.gcn_output, Nclass)
if device:
model.cuda()
gcn_model.cuda()
co_model.cuda()
t1 = time.time()
logger.info('Recursive model established, %s'%str((t1-t0)/60))
## 3. looping SGD
# criterion = nn.MSELoss(reduce = True, size_average=False)
criterion = nn.CrossEntropyLoss()
params = list(model.parameters())+list(gcn_model.parameters())+list(co_model.parameters())
optimizer = torch.optim.Adagrad(params, lr=lr, weight_decay=args.weight_decay)
losses_5, losses = [], []
num_examples_seen = 0
if device:
features = features.cuda()
adj = adj.cuda()
graph_train = graph_train.cuda()
graph_test = graph_test.cuda()
# logger.info(str(parent_num_train))
for epoch in range(Nepoch):
## one SGD
model.train()
gcn_model.train()
co_model.train()
optimizer.zero_grad()
indexs = [i for i in range(len(y_train))]
#random.shuffle(indexs)
for i in indexs:
if device:
word_train_instance = torch.from_numpy(word_train[i]).cuda()
index_train_instance = torch.from_numpy(index_train[i]).long().cuda()
parent_num_train_instance = torch.IntTensor([parent_num_train[i]]).cuda()
tree_train_instance = torch.from_numpy(tree_train[i]).cuda()
y_train_instance = torch.Tensor(y_train[i]).cuda()
else:
word_train_instance = torch.from_numpy(word_train[i])
index_train_instance = torch.from_numpy(index_train[i]).long()
parent_num_train_instance = torch.IntTensor([parent_num_train[i]])
tree_train_instance = torch.from_numpy(tree_train[i])
y_train_instance = torch.Tensor(y_train[i])
rvnn_out = model(word_train_instance, index_train_instance, parent_num_train_instance, tree_train_instance)
gcn_out = gcn_model(features, adj)
pred_y = co_model(torch.cat([rvnn_out,gcn_out[graph_train[i]]], 0))
pred_y = torch.unsqueeze(pred_y, 0)
y_train_instance = torch.unsqueeze(y_train_instance, 0)
loss = criterion(pred_y, y_train_instance.max(1)[1])
loss.backward()
optimizer.step()
#print loss, pred_y
losses.append(round(float(loss.detach().cpu().numpy()),2))
num_examples_seen += 1
logger.info("epoch=%d: loss=%f" % ( epoch, np.mean(losses) ))
## cal loss & evaluate
if epoch % 5 == 0:
model.eval()
gcn_model.eval()
co_model.eval()
losses_5.append((num_examples_seen, np.mean(losses)))
time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
logger.info("%s: Loss after num_examples_seen=%d epoch=%d: %f" % (time, num_examples_seen, epoch, np.mean(losses)))
prediction = []
for j in range(len(y_test)):
#print j
if device:
word_test_instance = torch.from_numpy(word_test[j]).cuda()
index_test_instance = torch.from_numpy(index_test[j]).long().cuda()
# logger.info(parent_num_train[i])
parent_num_test_instance = torch.IntTensor([parent_num_test[j]]).cuda()
tree_test_instance = torch.from_numpy(tree_test[j]).cuda()
else:
word_test_instance = torch.from_numpy(word_test[j])
index_test_instance = torch.from_numpy(index_test[j]).long()
parent_num_test_instance = torch.IntTensor([parent_num_test[j]])
tree_test_instance = torch.from_numpy(tree_test[j])
rvnn_out = model(word_test_instance, index_test_instance, parent_num_test_instance, tree_test_instance)
gcn_out = gcn_model(features, adj)
predict = co_model(torch.cat([rvnn_out,gcn_out[graph_test[j]]], 0))
predict = F.softmax(predict)
prediction.append(predict.detach().cpu().numpy())
res = evaluation_4class(prediction, y_test)
logger.info('results:%s'%str(res))
## Adjust the learning rate if loss increases
if len(losses_5) > 1 and losses_5[-1][1] > losses_5[-2][1]:
lr = lr * 0.5
adjust_learning_rate(optimizer, lr)
logger.info("Setting learning rate to %f"%lr)
losses = []
model_path = './td_model/'+args.dataset_str+'_'+'f'+args.fold_index+'_'+'train_'+str(epoch)+'_model_params.pkl'
gcn_path = './td_model/'+args.dataset_str+'_'+'f'+args.fold_index+'_'+'train_'+str(epoch)+'_gcn_params.pkl'
co_path = './td_model/'+args.dataset_str+'_'+'f'+args.fold_index+'_'+'train_'+str(epoch)+'_co_params.pkl'
torch.save(model.state_dict(), model_path)
torch.save(gcn_model.state_dict(), gcn_path)
torch.save(co_model.state_dict(), co_path)