forked from Kaixhin/Rainbow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
env.py
95 lines (84 loc) · 3.31 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
from collections import deque
import random
import atari_py
import cv2
import torch
class Env():
def __init__(self, args):
self.device = args.device
self.ale = atari_py.ALEInterface()
self.ale.setInt('random_seed', args.seed)
self.ale.setInt('max_num_frames_per_episode', args.max_episode_length)
self.ale.setFloat('repeat_action_probability', 0) # Disable sticky actions
self.ale.setInt('frame_skip', 0)
self.ale.setBool('color_averaging', False)
self.ale.loadROM(atari_py.get_game_path(args.game)) # ROM loading must be done after setting options
actions = self.ale.getMinimalActionSet()
self.actions = dict([i, e] for i, e in zip(range(len(actions)), actions))
self.lives = 0 # Life counter (used in DeepMind training)
self.life_termination = False # Used to check if resetting only from loss of life
self.window = args.history_length # Number of frames to concatenate
self.state_buffer = deque([], maxlen=args.history_length)
self.training = True # Consistent with model training mode
def _get_state(self):
state = cv2.resize(self.ale.getScreenGrayscale(), (84, 84), interpolation=cv2.INTER_LINEAR)
return torch.tensor(state, dtype=torch.float32, device=self.device).div_(255)
def _reset_buffer(self):
for _ in range(self.window):
self.state_buffer.append(torch.zeros(84, 84, device=self.device))
def reset(self):
if self.life_termination:
self.life_termination = False # Reset flag
self.ale.act(0) # Use a no-op after loss of life
else:
# Reset internals
self._reset_buffer()
self.ale.reset_game()
# Perform up to 30 random no-ops before starting
for _ in range(random.randrange(30)):
self.ale.act(0) # Assumes raw action 0 is always no-op
if self.ale.game_over():
self.ale.reset_game()
# Process and return "initial" state
observation = self._get_state()
self.state_buffer.append(observation)
self.lives = self.ale.lives()
return torch.stack(list(self.state_buffer), 0)
def step(self, action):
# Repeat action 4 times, max pool over last 2 frames
frame_buffer = torch.zeros(2, 84, 84, device=self.device)
reward, done = 0, False
for t in range(4):
reward += self.ale.act(self.actions.get(action))
if t == 2:
frame_buffer[0] = self._get_state()
elif t == 3:
frame_buffer[1] = self._get_state()
done = self.ale.game_over()
if done:
break
observation = frame_buffer.max(0)[0]
self.state_buffer.append(observation)
# Detect loss of life as terminal in training mode
if self.training:
lives = self.ale.lives()
if lives < self.lives and lives > 0: # Lives > 0 for Q*bert
self.life_termination = not done # Only set flag when not truly done
done = True
self.lives = lives
# Return state, reward, done
return torch.stack(list(self.state_buffer), 0), reward, done
# Uses loss of life as terminal signal
def train(self):
self.training = True
# Uses standard terminal signal
def eval(self):
self.training = False
def action_space(self):
return len(self.actions)
def render(self):
cv2.imshow('screen', self.ale.getScreenRGB()[:, :, ::-1])
cv2.waitKey(1)
def close(self):
cv2.destroyAllWindows()