forked from CPernet/Robust-Correlations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_outliers.m
262 lines (223 loc) · 8.83 KB
/
detect_outliers.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
function outliers = detect_outliers(X,Y,fig_flag,method)
% Finds univariate and multivariate outliers
% 3 'methods' are available and they can return different
% results
%
% FORMAT outliers = detect_outliers(X,Y)
% outliers = detect_outliers(X,Y,fig_flag,'method')
%
% INPUTS: X and Y are two vectors of the same length.
% fig_flag 1/0 indicates to make a figure or not
% method 'boxplot' relies on the interquartile range
% 'MAD' relies on the median absolute deviation to the median
% 'S-outlier' relies on the median of absolute distances
% if empty or 'All', the 3 methods are computed
%
% OUTPUTS: outliers is a structure with:
%
% * univariate outliers flagged
% outliers.univariate = indices of univariate outliers in X
% outliers.univariate = indices of univariate outliers in Y
%
% * bivariate outliers flagged
% outliers.bivariate = indices of bivariate outliers
%
% The boxplot rule for univariate outliers uses Carling's modification of
% the boxplot rule - Carling, K. (2000). Resistant outlier rules and the
% non-Gaussian case. Statistics & Data analysis, 33, 249-258.
%
% The median absolute deviation standard deviations for univariate outliers
% uses a modification for finite sample size - William, J Stat Computation
% and Simulation, 81, 11, 2011
%
% S-outliers relies on the median of absolute distances. Because it doesn't
% rely on an estimator of central tendency (like the MAD) it works well for
% non symmetric distributons - Rousseeuw, P.J. and Croux C. (1993).
% Alternatives to the the median absolute deviation. Journal of the American
% Statitical Association, 88 (424) p 1273-1263
%
% Multivariate outliers are detected by computing all the distances to the
% center of the bivariate cloud (ie using a projection method) and then
% checking if the distances are above a given distance (Wilcox 2012).
% For 'boxplot' and 'MAD' it corresponds to the median distance +
% gval*value with gval = sqrt(chi2inv(0.975,2)) and value being the IQR or
% the normalized MAD. For 'S-outlier' it is like in the univariate case.
%
% See also MADMEDIANRULE, IQR_METHOD, MCDCOV
%
% Cyril Pernet, v1 23/07/2012
% Cyril Pernet and Guillaume Rousselet, v2 08/10/2012
% -------------------------------------------------
% Copyright (C) Corr_toolbox 2012
%% check inputs
if nargin<2
error('not enough input arguments');
elseif nargin==2
fig_flag = 1;
method = 'All';
elseif nargin == 3
method = 'All';
elseif nargin>4
error('too many input arguments');
end
% transpose if x or y are not in column
if size(X,1) == 1 && size(X,2) > 1; X = X'; end
if size(Y,1) == 1 && size(Y,2) > 1; Y = Y'; end
if numel(size(X))>2 || numel(size(Y))>2
error('only taking vectors as input')
end
if numel(X) ~= numel(Y)
error('vector must be of the same length')
end
[n,p]=size(X);
%% ------------------------------------------------------------------
%% univariate outliers
if strcmp(method,'All') || strcmp(method,'boxplot')
% Carling's modification of the boxplot rule
Xoutliers_boxplot = iqr_method(X,2);
Youtliers_boxplot = iqr_method(Y,2);
outliers.univariate.boxplot = [Xoutliers_boxplot ,Youtliers_boxplot];
end
if strcmp(method,'All') || strcmp(method,'MAD')
% applies MAD with a correction for finite sample sizes
[Xoutliers_MAD,distance] = madmedianrule(X,2);
[Youtliers_MAD,distance] = madmedianrule(Y,2);
outliers.univariate.MAD = [Xoutliers_MAD Youtliers_MAD];
end
if strcmp(method,'All') || strcmp(method,'S-outlier')
[Xoutliers_Soutlier,distance] = madmedianrule(X,3);
[Youtliers_Soutlier,distance] = madmedianrule(Y,3);
outliers.univariate.Soutlier = [Xoutliers_Soutlier Youtliers_Soutlier];
end
if strcmp(method,'All')
outliers.univariate.intersection = zeros(n,2);
X_all = intersect(intersect(find(Xoutliers_boxplot),find(Xoutliers_MAD)),find(Xoutliers_Soutlier));
Y_all = intersect(intersect(find(Youtliers_boxplot),find(Youtliers_MAD)),find(Youtliers_Soutlier));
outliers.univariate.intersection(X_all,1) = 1;
outliers.univariate.intersection(Y_all,2) = 1;
end
%% ------------------------------------------------------------------
%% multivariate outliers
tmpX=X; tmpY=Y; X = [X Y];
% get the centre of the bivariate distribution
result=mcdcov(X,'cor',1,'plots',0,'h',floor((n+size(X,2)*2+1)/2));
center = result.center;
flag = NaN(n,3);
gval = sqrt(chi2inv(0.975,2));
% orthogonal projection to the lines joining the center
% followed by univariate outlier detection
for i=1:n % for each row
dis=NaN(n,1);
B = (X(i,:)-center)';
BB = B.^2;
bot = sum(BB);
if bot~=0
for j=1:n
A = (X(j,:)-center)';
dis(j)= norm(A'*B/bot.*B);
end
% IQR rule for skipped corr
[ql,qu]=idealf(dis);
record1{i} = (dis > median(dis)+gval.*(qu-ql)) ;
% MAD rule for skipped corr
[out,value] = madmedianrule(dis,2);
record2{i} = dis > (median(dis)+gval.*value);
% S-outlier
[record3{i},value] = madmedianrule(dis,3);
end
end
flag(:,1) = sum(cell2mat(record1),2); % if any point is flagged
flag(:,2) = sum(cell2mat(record2),2);
flag(:,3) = sum(cell2mat(record3),2);
flag=(flag>=1);
vec=repmat([1:n]',1,8);
for m=1:3
if sum(flag(:,m))==0
outid{m}=[];
else
outid{m} = vec(flag(:,m),m);
end
end
vec = zeros(n,1);
if strcmp(method,'All') || strcmp(method,'boxplot')
outliers.bivariate.boxplot = vec;
outliers.bivariate.boxplot(outid{1}) = 1;
end
if strcmp(method,'All') || strcmp(method,'MAD')
outliers.bivariate.MAD = vec;
outliers.bivariate.MAD(outid{2}) = 1;
end
if strcmp(method,'All') || strcmp(method,'S-outlier')
outliers.bivariate.Soutlier = vec;
outliers.bivariate.Soutlier(outid{3}) = 1;
end
if strcmp(method,'All')
outliers.bivariate.intersection = vec;
outliers.bivariate.intersection(intersect(intersect(outid{1},outid{2}),outid{3})) = 1;
end
%% ------------------------------------------------------------------
%% figure(s)
if strcmp(method,'All') || strcmp(method,'boxplot')
figure('Color','w','Name','Outlier detection using the boxplot rule');
make_figure(X(:,1),X(:,2),outliers.univariate.boxplot,outliers.bivariate.boxplot);
end
if strcmp(method,'All') || strcmp(method,'MAD')
figure('Color','w','Name','Outlier detection using the MAD');
make_figure(X(:,1),X(:,2),outliers.univariate.MAD,outliers.bivariate.MAD);
end
if strcmp(method,'All') || strcmp(method,'S-outlier')
figure('Color','w','Name','Outlier detection using S-estimator');
make_figure(X(:,1),X(:,2),outliers.univariate.Soutlier,outliers.bivariate.Soutlier);
end
end
function make_figure(X,Y,Univariate_out,Bivariate_out)
% routine to make the figure
% univariate subplot
subplot(1,2,1);
scatter(X,Y,99,'o','filled'); grid on; hold on
xlabel('X','Fontsize',12); ylabel('Y','Fontsize',12);
title('Univariate outliers','Fontsize',16);
if sum(Univariate_out(:)) > 0
Xoutliers = Univariate_out(:,1);
Youtliers = Univariate_out(:,2);
common = intersect(find(Xoutliers),find(Youtliers));
if ~isempty(common)
scatter(X(common),Y(common),100,'k','filled')
try common ~= find(Xoutliers)
scatter(X(find(Xoutliers)),Y(find(Youtliers)),100,'r','filled')
scatter(X(find(Youtliers)),Y(find(Youtliers)),100,'g','filled')
legend('data','outliers in X','outliers in Y','outliers in X and in Y')
catch ME
legend('data','outliers in X and in Y')
end
elseif ~isempty(find(Xoutliers)) && ~isempty(find(Youtliers))
scatter(X(find(Xoutliers)),Y(find(Xoutliers)),100,'r','filled')
scatter(X(find(Youtliers)),Y(find(Youtliers)),100,'g','filled')
legend('data','outliers in X','outliers in Y');
elseif ~isempty(find(Xoutliers)) && isempty(find(Youtliers))
scatter(X(find(Xoutliers)),Y(find(Xoutliers)),100,'r','filled')
legend('data','outliers in X')
elseif ~isempty(find(Youtliers)) && isempty(find(Xoutliers))
scatter(X(find(Youtliers)),Y(find(Youtliers)),100,'g','filled')
legend('data','outliers in Y')
end
disp(' ');
fprintf('%g outliers found in X \n',sum(Xoutliers))
fprintf('%g outliers found in Y \n',sum(Youtliers))
end
axis tight
box on;set(gca,'FontSize',14)
% bivariate outliers
subplot(1,2,2);
a = X(find(Bivariate_out==0));
b = Y(find(Bivariate_out==0));
scatter(a,b,100,'b','fill');
grid on; hold on;
hh = lsline; set(hh,'Color','r','LineWidth',4);
scatter(X(find(Bivariate_out)),Y(find(Bivariate_out)),100,'r','filled')
xlabel('X','Fontsize',12); ylabel('Y','Fontsize',12);
title('Bivariate outliers','Fontsize',16);
fprintf('%g bivartiate outliers found \n',sum(Bivariate_out))
axis([min(X) max(X) min(Y) max(Y)])
box on;set(gca,'FontSize',14)
end