简体中文 | English
ByteTrack(ByteTrack: Multi-Object Tracking by Associating Every Detection Box) 通过关联每个检测框来跟踪,而不仅是关联高分的检测框。对于低分数检测框会利用它们与轨迹片段的相似性来恢复真实对象并过滤掉背景检测框。此处提供了几个常用检测器的配置作为参考。由于训练数据集、输入尺度、训练epoch数、NMS阈值设置等的不同均会导致模型精度和性能的差异,请自行根据需求进行适配。
检测训练数据集 | 检测器 | 输入尺度 | ReID | 检测mAP(0.5:0.95) | MOTA | IDF1 | FPS | 配置文件 |
---|---|---|---|---|---|---|---|---|
MOT-17 half train | YOLOv3 | 608x608 | - | 42.7 | 49.5 | 54.8 | - | 配置文件 |
MOT-17 half train | PP-YOLOE-l | 640x640 | - | 52.9 | 50.4 | 59.7 | - | 配置文件 |
MOT-17 half train | PP-YOLOE-l | 640x640 | PPLCNet | 52.9 | 51.7 | 58.8 | - | 配置文件 |
mix_mot_ch | YOLOX-x | 800x1440 | - | 61.9 | 77.3 | 71.6 | - | 配置文件 |
mix_det | YOLOX-x | 800x1440 | - | 65.4 | 84.5 | 77.4 | - | 配置文件 |
注意:
- 检测任务相关配置和文档请查看detector
网络 | 测试集 | MOTA | IDF1 | IDS | FP | FN | FPS | 下载链接 | 配置文件 |
---|---|---|---|---|---|---|---|---|---|
ByteTrack-x | MOT-17 Train | 84.4 | 72.8 | 837 | 5653 | 10985 | - | 下载链接 | 配置文件 |
ByteTrack-x | MOT-17 Test | 78.4 | 69.7 | 4974 | 37551 | 79524 | - | 下载链接 | 配置文件 |
ByteTrack-x | MOT-16 Train | 83.5 | 72.7 | 800 | 6973 | 10419 | - | 下载链接 | 配置文件 |
ByteTrack-x | MOT-16 Test | 77.7 | 70.1 | 1570 | 15695 | 23304 | - | 下载链接 | 配置文件 |
注意:
- 模型权重下载链接在配置文件中的
det_weights
和reid_weights
,运行tools/eval_mot.py
评估的命令即可自动下载,reid_weights
若为None则表示不需要使用,ByteTrack默认不使用ReID权重。 - MOT17-half train是MOT17的train序列(共7个)每个视频的前一半帧的图片和标注组成的数据集,而为了验证精度可以都用MOT17-half val数据集去评估,它是每个视频的后一半帧组成的,数据集可以从此链接下载,并解压放在
dataset/mot/
文件夹下。 - mix_mot_ch数据集,是MOT17、CrowdHuman组成的联合数据集,mix_det是MOT17、CrowdHuman、Cityscapes、ETHZ组成的联合数据集,数据集整理的格式和目录可以参考此链接,最终放置于
dataset/mot/
目录下。为了验证精度可以都用MOT17-half val数据集去评估。 - ByteTrack的训练是单独的检测器训练MOT数据集,推理是组装跟踪器去评估MOT指标,单独的检测模型也可以评估检测指标。
- ByteTrack的导出部署,是单独导出检测模型,再组装跟踪器运行的,参照PP-Tracking。
通过如下命令一键式启动训练和评估
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml --eval --amp
# 或者
python -m paddle.distributed.launch --log_dir=ppyoloe --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml --eval --amp
注意:
--eval
是边训练边验证精度;--amp
是混合精度训练避免溢出,推荐使用paddlepaddle2.2.2版本。
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml -o weights=https://bj.bcebos.com/v1/paddledet/models/mot/ppyoloe_crn_l_36e_640x640_mot17half.pdparams
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml -o weights=https://bj.bcebos.com/v1/paddledet/models/mot/yolox_x_24e_800x1440_mix_det.pdparams
注意:
- 评估检测使用的是
tools/eval.py
, 评估跟踪使用的是tools/eval_mot.py
。
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_yolov3.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe_pplcnet.yml --scaled=True
# 或者
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/bytetrack/bytetrack_yolox.yml --scaled=True
注意:
--scaled
表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE YOLOv3则为False,如果使用通用检测模型则为True, 默认值是False。- 跟踪结果会存于
{output_dir}/mot_results/
中,里面每个视频序列对应一个txt,每个txt文件每行信息是frame,id,x1,y1,w,h,score,-1,-1,-1
, 此外{output_dir}
可通过--output_dir
设置,默认文件夹名为output
。
使用单个GPU通过如下命令预测一个视频,并保存为视频
# 下载demo视频
wget https://bj.bcebos.com/v1/paddledet/data/mot/demo/mot17_demo.mp4
# 使用PPYOLOe行人检测模型
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/bytetrack/bytetrack_ppyoloe.yml --video_file=mot17_demo.mp4 --scaled=True --save_videos
# 或者使用YOLOX行人检测模型
CUDA_VISIBLE_DEVICES=0 python tools/infer_mot.py -c configs/mot/bytetrack/bytetrack_yolox.yml --video_file=mot17_demo.mp4 --scaled=True --save_videos
注意:
- 请先确保已经安装了ffmpeg, Linux(Ubuntu)平台可以直接用以下命令安装:
apt-get update && apt-get install -y ffmpeg
。 --scaled
表示在模型输出结果的坐标是否已经是缩放回原图的,如果使用的检测模型是JDE的YOLOv3则为False,如果使用通用检测模型则为True。--save_videos
表示保存可视化视频,同时会保存可视化的图片在{output_dir}/mot_outputs/
中,{output_dir}
可通过--output_dir
设置,默认文件夹名为output
。
Step 1:导出检测模型
# 导出PPYOLOe行人检测模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/bytetrack/detector/ppyoloe_crn_l_36e_640x640_mot17half.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/ppyoloe_crn_l_36e_640x640_mot17half.pdparams
# 或者导出YOLOX行人检测模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/yolox_x_24e_800x1440_mix_det.pdparams
Step 2:导出ReID模型(可选步骤,默认不需要)
# 导出PPLCNet ReID模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/mot/deepsort/reid/deepsort_pplcnet.yml -o reid_weights=https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pplcnet.pdparams
python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/ppyoloe_crn_l_36e_640x640_mot17half/ --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file=mot17_demo.mp4 --device=GPU --save_mot_txts
# 或者
python deploy/pptracking/python/mot_sde_infer.py --model_dir=output_inference/yolox_x_24e_800x1440_mix_det/ --tracker_config=deploy/pptracking/python/tracker_config.yml --video_file=mot17_demo.mp4 --device=GPU --save_mot_txts
注意:
- 跟踪模型是对视频进行预测,不支持单张图的预测,默认保存跟踪结果可视化后的视频,可添加
--save_mot_txts
(对每个视频保存一个txt)或--save_mot_txt_per_img
(对每张图片保存一个txt)表示保存跟踪结果的txt文件,或--save_images
表示保存跟踪结果可视化图片。 - 跟踪结果txt文件每行信息是
frame,id,x1,y1,w,h,score,-1,-1,-1
。
@article{zhang2021bytetrack,
title={ByteTrack: Multi-Object Tracking by Associating Every Detection Box},
author={Zhang, Yifu and Sun, Peize and Jiang, Yi and Yu, Dongdong and Yuan, Zehuan and Luo, Ping and Liu, Wenyu and Wang, Xinggang},
journal={arXiv preprint arXiv:2110.06864},
year={2021}
}