forked from loriab/v2rdm_casscf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtei.cc
323 lines (243 loc) · 10.2 KB
/
tei.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
*@BEGIN LICENSE
*
* v2RDM-CASSCF, a plugin to:
*
* PSI4: an ab initio quantum chemistry software package
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Copyright (c) 2014, The Florida State University. All rights reserved.
*
*@END LICENSE
*
*/
#include <psi4-dec.h>
#include <libparallel/parallel.h>
#include <liboptions/liboptions.h>
#include <libqt/qt.h>
#include<libtrans/integraltransform.h>
#include<libtrans/mospace.h>
#include<libmints/wavefunction.h>
#include<libmints/mints.h>
#include<libmints/vector.h>
#include<libmints/matrix.h>
#include<../bin/fnocc/blas.h>
#include<time.h>
#include"v2rdm_solver.h"
#ifdef _OPENMP
#include<omp.h>
#else
#define omp_get_wtime() ( (double)clock() / CLOCKS_PER_SEC )
#define omp_get_max_threads() 1
#endif
using namespace boost;
using namespace psi;
using namespace fnocc;
namespace psi{ namespace v2rdm_casscf{
void v2RDMSolver::GetIntegrals() {
// one-electron integrals:
boost::shared_ptr<Matrix> K1 = GetOEI();
// size of the tei buffer
if ( is_df_ ) {
// size of the 3-index integral buffer
tei_full_dim_ = (long int) nQ_ * (long int) ( nmo_ - nfrzv_ ) * ( (long int) ( nmo_ - nfrzv_ ) + 1L ) / 2L ;
// just point to 3-index integral buffer
tei_full_sym_ = Qmo_;
}else {
// size of the 4-index integral buffer
tei_full_dim_ = 0;
for (int h = 0; h < nirrep_; h++) {
tei_full_dim_ += (long int)gems_full[h] * ( (long int)gems_full[h] + 1L ) / 2L;
}
tei_full_sym_ = (double*)malloc(tei_full_dim_*sizeof(double));
memset((void*)tei_full_sym_,'\0',tei_full_dim_*sizeof(double));
}
// size of d2, blocked by symmetry, including the core orbitals
d2_plus_core_dim_ = 0;
for (int h = 0; h < nirrep_; h++) {
d2_plus_core_dim_ += (long int)gems_plus_core[h] * ( (long int)gems_plus_core[h] + 1L ) / 2L;
}
d2_plus_core_sym_ = (double*)malloc(d2_plus_core_dim_*sizeof(double));
memset((void*)d2_plus_core_sym_,'\0',d2_plus_core_dim_*sizeof(double));
// allocate memory for oei tensor, blocked by symmetry, excluding frozen virtuals
oei_full_dim_ = 0;
for (int h = 0; h < nirrep_; h++) {
oei_full_dim_ += ( nmopi_[h] - frzvpi_[h] ) * ( nmopi_[h] - frzvpi_[h] + 1 ) / 2;
}
// allocate memory for d1 tensor, blocked by symmetry, including the core orbitals
d1_plus_core_dim_ = 0;
for ( int h = 0; h < nirrep_; h++) {
d1_plus_core_dim_ += (rstcpi_[h] + frzcpi_[h] + amopi_[h]) * ( rstcpi_[h] + frzcpi_[h] + amopi_[h] + 1 ) / 2;
}
oei_full_sym_ = (double*)malloc(oei_full_dim_*sizeof(double));
memset((void*)oei_full_sym_,'\0',oei_full_dim_*sizeof(double));
d1_plus_core_sym_ = (double*)malloc(d1_plus_core_dim_*sizeof(double));
memset((void*)d1_plus_core_sym_,'\0',d1_plus_core_dim_*sizeof(double));
offset = 0;
for (int h = 0; h < nirrep_; h++) {
for (long int i = 0; i < nmopi_[h] - frzvpi_[h]; i++) {
for (long int j = i; j < nmopi_[h] - frzvpi_[h]; j++) {
oei_full_sym_[offset + INDEX(i,j)] = K1->pointer(h)[i][j];
}
}
offset += ( nmopi_[h] - frzvpi_[h] ) * ( nmopi_[h] - frzvpi_[h] + 1 ) / 2;
}
if ( !is_df_ ) {
// read tei's from disk
GetTEIFromDisk();
}
RepackIntegrals();
}
void v2RDMSolver::GetTEIFromDisk() {
double * temptei = (double*)malloc((long int)nmo_*(long int)nmo_*(long int)nmo_*(long int)nmo_*sizeof(double));
memset((void*)temptei,'\0',(long int)nmo_*(long int)nmo_*(long int)nmo_*(long int)nmo_*sizeof(double));
// read two-electron integrals from disk
ReadIntegrals(temptei,(long int)nmo_);
// load tei_full_sym_
long int offset = 0;
long int n2 = (long int)nmo_*(long int)nmo_;
long int n3 = n2 * (long int)nmo_;
for (int h = 0; h < nirrep_; h++) {
for (long int ij = 0; ij < gems_full[h]; ij++) {
long int i = bas_really_full_sym[h][ij][0];
long int j = bas_really_full_sym[h][ij][1];
for (long int kl = ij; kl < gems_full[h]; kl++) {
long int k = bas_really_full_sym[h][kl][0];
long int l = bas_really_full_sym[h][kl][1];
tei_full_sym_[offset + INDEX(ij,kl)] = temptei[i*n3+j*n2+k*(long int)nmo_+l];
}
}
offset += (long int)gems_full[h] * ( (long int)gems_full[h] + 1 ) / 2;
}
free(temptei);
}
// repack rotated full-space integrals into active-space integrals
void v2RDMSolver::RepackIntegrals(){
FrozenCoreEnergy();
double * c_p = c->pointer();
// two-electron part
long int na = nalpha_ - nrstc_ - nfrzc_;
long int nb = nbeta_ - nrstc_ - nfrzc_;
for (int h = 0; h < nirrep_; h++) {
#pragma omp parallel for schedule (static)
for (long int ij = 0; ij < gems_ab[h]; ij++) {
long int i = bas_ab_sym[h][ij][0];
long int j = bas_ab_sym[h][ij][1];
long int ii = full_basis[i];
long int jj = full_basis[j];
for (long int kl = 0; kl < gems_ab[h]; kl++) {
long int k = bas_ab_sym[h][kl][0];
long int l = bas_ab_sym[h][kl][1];
long int kk = full_basis[k];
long int ll = full_basis[l];
int hik = SymmetryPair(symmetry[i],symmetry[k]);
c_p[d2aboff[h] + ij*gems_ab[h]+kl] = TEI(ii,kk,jj,ll,hik);
}
}
}
for (int h = 0; h < nirrep_; h++) {
#pragma omp parallel for schedule (static)
for (long int ij = 0; ij < gems_aa[h]; ij++) {
long int i = bas_aa_sym[h][ij][0];
long int j = bas_aa_sym[h][ij][1];
long int ii = full_basis[i];
long int jj = full_basis[j];
for (long int kl = 0; kl < gems_aa[h]; kl++) {
long int k = bas_aa_sym[h][kl][0];
long int l = bas_aa_sym[h][kl][1];
long int kk = full_basis[k];
long int ll = full_basis[l];
int hik = SymmetryPair(symmetry[i],symmetry[k]);
int hil = SymmetryPair(symmetry[i],symmetry[l]);
double dum1 = TEI(ii,kk,jj,ll,hik);
double dum2 = TEI(ii,ll,jj,kk,hil);
c_p[d2aaoff[h] + ij*gems_aa[h]+kl] = dum1 - dum2;
c_p[d2bboff[h] + ij*gems_aa[h]+kl] = dum1 - dum2;
}
}
}
}
void v2RDMSolver::FrozenCoreEnergy() {
// if frozen core, adjust oei's and compute frozen core energy:
efzc_ = 0.0;
offset = 0;
long int offset3 = 0;
for (int h = 0; h < nirrep_; h++) {
for (int i = 0; i < rstcpi_[h] + frzcpi_[h]; i++) {
int ifull = i + offset;
efzc_ += 2.0 * oei_full_sym_[offset3 + INDEX(i,i)];
long int offset2 = 0;
for (int h2 = 0; h2 < nirrep_; h2++) {
for (int j = 0; j < rstcpi_[h2] + frzcpi_[h2]; j++) {
int jfull = j + offset2;
int hij = SymmetryPair(h,h2);
double dum1 = TEI(ifull,ifull,jfull,jfull, 0);
double dum2 = TEI(ifull,jfull,ifull,jfull, hij);
efzc_ += 2.0 * dum1 - dum2;
}
offset2 += nmopi_[h2] - frzvpi_[h2];
}
}
offset += nmopi_[h] - frzvpi_[h];
offset3 += ( nmopi_[h] - frzvpi_[h] ) * ( nmopi_[h] - frzvpi_[h] + 1 ) / 2;
}
double * c_p = c->pointer();
// adjust one-electron integrals for core repulsion contribution
offset = 0;
offset3 = 0;
for (int h = 0; h < nirrep_; h++) {
for (int i = rstcpi_[h] + frzcpi_[h]; i < nmopi_[h] - rstvpi_[h] - frzvpi_[h]; i++) {
int ifull = i + offset;
for (int j = rstcpi_[h] + frzcpi_[h]; j < nmopi_[h] - rstvpi_[h] - frzvpi_[h]; j++) {
int jfull = j + offset;
double dum = 0.0;
long int offset2 = 0;
for (int h2 = 0; h2 < nirrep_; h2++) {
for (int k = 0; k < rstcpi_[h2] + frzcpi_[h2]; k++) {
int kfull = k + offset2;
int hik = SymmetryPair(h,h2);
double dum1 = TEI(ifull,jfull,kfull,kfull,0);
double dum2 = TEI(ifull,kfull,jfull,kfull,hik);
dum += 2.0 * dum1 - dum2;
}
offset2 += nmopi_[h2] - frzvpi_[h2];
}
c_p[d1aoff[h] + (i-rstcpi_[h]-frzcpi_[h])*amopi_[h] + (j-rstcpi_[h]-frzcpi_[h])] = oei_full_sym_[offset3+INDEX(i,j)];
c_p[d1boff[h] + (i-rstcpi_[h]-frzcpi_[h])*amopi_[h] + (j-rstcpi_[h]-frzcpi_[h])] = oei_full_sym_[offset3+INDEX(i,j)];
c_p[d1aoff[h] + (i-rstcpi_[h]-frzcpi_[h])*amopi_[h] + (j-rstcpi_[h]-frzcpi_[h])] += dum;
c_p[d1boff[h] + (i-rstcpi_[h]-frzcpi_[h])*amopi_[h] + (j-rstcpi_[h]-frzcpi_[h])] += dum;
}
}
offset += nmopi_[h] - frzvpi_[h];
offset3 += ( nmopi_[h] - frzvpi_[h] ) * ( nmopi_[h] - frzvpi_[h] + 1 ) / 2;
}
}
double v2RDMSolver::TEI(int i, int j, int k, int l, int h) {
double dum = 0.0;
if ( is_df_ ) {
dum = C_DDOT(nQ_,Qmo_ + nQ_*INDEX(i,j),1,Qmo_+nQ_*INDEX(k,l),1);
}else {
int myoff = 0;
for (int myh = 0; myh < h; myh++) {
myoff += (long int)gems_full[myh] * ( (long int)gems_full[myh] + 1L ) / 2L;
}
int ij = ibas_full_sym[h][i][j];
int kl = ibas_full_sym[h][k][l];
dum = tei_full_sym_[myoff + INDEX(ij,kl)];
}
return dum;
}
}}