-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtcol.py
138 lines (122 loc) · 6.09 KB
/
tcol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import torch
from flerken.framework.framework import Model
from flerken.utils import BaseDict
from google_drive_downloader import GoogleDriveDownloader as ggd
COMPUTE = True
BATCH_SIZE = 10
MODEL = 'y_net_gr'
n = 1
DATA_PATH = './the_circle_of_life'
# ===================================================================================================
# ===================================================================================================
if not os.path.exists('./the_circle_of_life'):
ggd.download_file_from_google_drive('1An3kalwUpyPWpeH_urJchWsWaffVj3_J', './the_circle_of_life.zip', unzip=True)
os.remove('./the_circle_of_life.zip')
DEBUG = BaseDict({'verbose': False, 'isnan': True, 'ds_autogen': False, 'audio_length': True,
'video_example': False})
constructor = getattr(__import__('VnBSS'), 'y_net_gr')
model = constructor(pretrained=True, n=n, debug_dict=DEBUG)
DST = os.path.join(DATA_PATH, 'frames_npy', 'estimated_samples', MODEL)
DEVICE = torch.device('cuda:0')
# CONSTANTS
ROLES = ['antilope1', 'antilope2', 'backtrack', 'leonas', 'leones', 'rafiki']
SR = 16384
FPS = 25
TEMPORAL_FEATS = 16 # n temporal fetures expected in the bottleneck per 4s of track
AUDIO_SAMPLE = 65535 # Audio length per 4s
CROP = 34 # N seconds to crop from the beginning
# PATHS
frames_path = os.path.join(DATA_PATH, 'frames')
audios_path = os.path.join(DATA_PATH, 'audio')
embeddings_path = os.path.join(DATA_PATH, 'llcp_embed')
landmarks_path = os.path.join(DATA_PATH, 'landmarks')
original_vd = os.path.join(DATA_PATH, 'samples')
gt_ad_path = os.path.join(audios_path, 'the_circle_of_life.wav')
paths = {}
for role in ROLES:
paths[f'{role}_vd_path'] = os.path.join(frames_path, f'{role}.npy')
paths[f'{role}_or_path'] = os.path.join(original_vd, f'{role}.mp4')
paths[f'{role}_ad_path'] = os.path.join(audios_path, f'{role}.wav')
paths[f'{role}_em_path'] = os.path.join(embeddings_path, f'{role}.npy')
paths[f'{role}_ld_path'] = os.path.join(landmarks_path, f'{role}.npy')
if COMPUTE:
import numpy as np
from scipy.io.wavfile import read, write
from flerken.audio import np_int2float
import config
from torch_mir_eval import bss_eval_sources
cfg_path = config.__path__[0]
torch.set_grad_enabled(False)
# Crop ground-truth
gt_ad = torch.from_numpy(np_int2float(read(gt_ad_path)[1])[CROP * SR:]).to(DEVICE)
for role in ROLES:
# plt.imshow(np.load(paths[f'{role}_vd_path'])[CROP * 4 * FPS:][100])
# plt.show()
globals()[f'{role}_vd'] = torch.from_numpy(
np.load(paths[f'{role}_vd_path'])[CROP * FPS:]).to(DEVICE)
sr, globals()[f'{role}_ad'] = read(paths[f'{role}_ad_path'])
globals()[f'{role}_ad'] = torch.from_numpy(
np_int2float(globals()[f'{role}_ad'])[CROP * SR:]).to(DEVICE)
globals()[f'{role}_est'] = torch.zeros_like(globals()[f'{role}_ad'])
assert sr == SR, f'Sampling rate must be {SR} but {sr} found'
globals()[f'{role}_em'] = torch.from_numpy(
np.load(paths[f'{role}_em_path'])[CROP * FPS:]).to(DEVICE)
globals()[f'{role}_ld'] = torch.from_numpy(
np.load(paths[f'{role}_ld_path'])[CROP * FPS:]).float().to(DEVICE)
if not os.path.exists(DST):
os.makedirs(DST)
# BACKWARD COMPATIBILITY MODIFICATION
model.eval()
model = Model(model)
model.to(DEVICE)
mean = torch.tensor(config.MEAN).to(DEVICE)
std = torch.tensor(config.STD).to(DEVICE)
# INFERENCE TIME
rvlen = rafiki_vd.shape[0]
n_chunks = rvlen // (4 * FPS * n)
cropped_mix = gt_ad[:n_chunks * AUDIO_SAMPLE * n].view(n_chunks, AUDIO_SAMPLE * n)
# plt.plot(gt_ad.cpu().numpy())
# plt.show()
for role in ROLES:
video = globals()[f'{role}_vd'][:n_chunks * 4 * FPS * n]
video = (video / 255. - mean) / std
# Crop around the mouth
video = video[..., 60:100, 20:80, :]
# plt.imshow((video[100]*std+mean).cpu().numpy())
# plt.show()
video = video.permute(0, 3, 1, 2)
video = torch.nn.functional.upsample_bilinear(
video, size=(96, 96))
video = video.view(n_chunks, 4 * FPS * n, 3, 96, 96).permute(0, 2, 1, 3, 4)
embedding = globals()[f'{role}_em'][:n_chunks * 4 * FPS * n].view(n_chunks, 4 * FPS * n, 512)
landmarks = globals()[f'{role}_ld'][:n_chunks * 4 * FPS * n].view(n_chunks, 4 * FPS * n, 68, 2).permute(0, 3, 1,
2).unsqueeze(
-1)
# (N, in_channels, T_{in}, V_{in}, M_{in})
c = BATCH_SIZE
for i in range(n_chunks // c):
inputs = {'src': cropped_mix[c * i:c * (i + 1)],
'llcp_embedding': embedding[c * i:c * (i + 1)],
'video': video[c * i:c * (i + 1)],
'landmarks': landmarks[c * i:c * (i + 1)]}
predictions = model.model.forward(inputs, real_sample=True)
est_audio = predictions['estimated_wav'].reshape(-1)
globals()[f'{role}_est'][AUDIO_SAMPLE * c * i:c * AUDIO_SAMPLE * (i + 1)] = est_audio
for role in ROLES:
sample = globals()[f'{role}_est'][:n_chunks * AUDIO_SAMPLE * n]
write(os.path.join(DST, f'{role}_est.wav'), SR, (sample / sample.abs().max()).cpu().numpy())
estimated = torch.stack([globals()[f'{role}_est'][:n_chunks * AUDIO_SAMPLE * n] for role in ROLES])
gt = torch.stack([globals()[f'{role}_ad'][:n_chunks * AUDIO_SAMPLE * n] for role in ROLES])
metrics = bss_eval_sources(gt.unsqueeze(0), estimated.unsqueeze(0))
# metrics = mir(gt.cpu().numpy(), estimated.cpu().numpy(), compute_permutation=False)
print(metrics)
else:
import streamlit as st
for role in ROLES:
st.subheader(f'{role}')
st.video(paths[f'{role}_or_path'])
st.write(f'Ground Truth')
# st.audio(globals()[f'{role}_ad_path'])
st.write(f'Estimated')
st.audio(os.path.join(DST, f'{role}_est.wav'))