-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlightcone.py
816 lines (721 loc) · 34.5 KB
/
lightcone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
# Various utility functions used by the scripts
import itertools, random, sys
from cmath import exp
from math import ceil, floor, log
import numpy as np
from numpy.linalg import matrix_power
from jax.scipy.linalg import expm
# from scipy.linalg import expm
np.set_printoptions(precision=6)
from qiskit.quantum_info.operators import Operator, Pauli
from qiskit.quantum_info import SparsePauliOp
import scipy.sparse.linalg as ssla
from scipy import sparse
from scipy.optimize import curve_fit
# import scipy
import multiprocessing
import matplotlib.pyplot as plt
import matplotlib as mpl
import jax
import jax.numpy as jnp
def analy_st_bound(r, n, J, h, t, ob_type='single'):
if ob_type == 'single':
return 2 * analytic_loose_commutator_bound(n, J, h, t/r) * r
elif ob_type == 'multi':
# return 2 * analytic_loose_commutator_bound(n, J, h, t/r) * r * n
return 2 * analytic_loose_commutator_bound(n, J, h, t/r) * r
else:
raise ValueError('ob_type should be either single or multi')
def analy_lc_bound(r, n, J, h, t, ob_type='single', verbose=False):
err_bound = 0
for i in range(1, r+1):
if ob_type == 'single':
# print('single')
n_lc = min(i*2, n)
err_bound += 2 * analytic_loose_commutator_bound(n_lc, J, h, t/r, verbose=verbose)
elif ob_type == 'multi':
for j in range(0, n):
n_lc = min(min(n-j, i*2) + min(j, 2*i), n)
# err_bound += 2 * analytic_loose_commutator_bound(n_lc, J, h, t/r, verbose)
err_bound += 2 * analytic_loose_commutator_bound(n_lc, J, h, t/r, verbose=verbose) / n
else:
raise ValueError('ob_type should be either single or multi')
return err_bound
def analytic_loose_commutator_bound(n, J, h, dt, pbc=False, verbose=False):
if pbc:
c1 = 16*J**2*h*(n) + 4*J**2*h*(n)
c2 = 8*(n)*J**2*h
else:
# c1 = 16*J**2*h*(n-1) + 4*J**2*h*(n-2)
# c2 = 8*(n-1)*J**2*h
if n % 2 == 1:
c1 = 4*J*h**2*(n-1) + 4*J**2*h*(n-1)
c2 = 4*J*h**2*(n-1) + 4*J**2*h*(n-2)
else:
c1 = 4*J*h**2*(n-1) + 4*J**2*h*(n-2)
c2 = 4*J*h**2*(n-1) + 4*J**2*h*(n-1)
if verbose: print(f'c1 (analy)={c1}, c2={c2}')
analytic_error_bound = c1 * dt**3 / 12 + c2 * dt**3 / 24
return analytic_error_bound
def bin_search_r(n, J, h, t, epsilon, search_precision, pf_type='standard', ob_type='single', verbose=False):
r_start = 1
r_end = 5 * n
error_list, r_list, exp_count_list = [], [], []
error = 2
print(f'=========pf_type={pf_type}, ob_type={ob_type}=========')
if pf_type == 'empirical':
r = r_start
tfI = transverse_field_ising_1d(n, J, h, [0], t=t, initialize=False)
exact_U = jax.scipy.linalg.expm(-1j * t * tfI.H_mat.toarray())
appro_U = standard_trotter(tfI.H_parity, t, r)
# appro_U = standard_trotter(tfI.H_parity[::-1], t, r_start)
if ob_type == 'single':
magn_op = SparsePauliOp.from_sparse_list([('Z', [0], 1)], n)
# # print('single observable error (jax): ', ob_error(magn_op, exact_U, appro_U))
# exact_ob = exact_U.conj().T @ magn_op.to_matrix() @ exact_U
# appro_ob = appro_U.conj().T @ magn_op.to_matrix() @ appro_U
error = ob_error(magn_op, exact_U, appro_U)
print(f'r={r_start}, single observable error (jax): ', error)
exp_count = exp_count_LC(r, n, 2*n)
elif ob_type == 'multi':
magn_op = SparsePauliOp.from_sparse_list([('Z', [i], 1) for i in range(0, n)], n)/n
error = ob_error(magn_op, exact_U, appro_U)
exp_count = 2 * (2*n) * r
if error < epsilon:
r_list.append(r_start)
error_list.append(error)
exp_count_list.append(exp_count)
print(f'r={r_start}; error={error:.6f}; exp_count={exp_count}')
r_found = r
else:
while r_start < r_end - 1:
# while abs(error - epsilon) > epsilon * search_precision and r_end - r_start != 1:
r = floor((r_start + r_end) / 2)
r_list.append(r)
if pf_type == 'standard':
error = analy_st_bound(r, n, J, h, t, ob_type=ob_type)
exp_count = 2 * (2*n) * r
elif pf_type == 'lightcone':
error = analy_lc_bound(r, n, J, h, t, ob_type=ob_type, verbose=False)
if ob_type == 'single':
exp_count = exp_count_LC(r, n, 2*n)
elif ob_type == 'multi':
exp_count = 2 * (2*n) * r
elif pf_type == 'empirical':
tfI = transverse_field_ising_1d(n, J, h, [0], t=t, initialize=False)
exact_U = expm(-1j * t * tfI.H_mat.toarray())
# magn_op = SparsePauliOp.from_sparse_list([('Z', [i], 1) for i in range(0, n)], n)
appro_U = standard_trotter(tfI.H_parity, t, r)
if ob_type == 'single':
magn_op = SparsePauliOp.from_sparse_list([('Z', [0], 1)], n)
error = ob_error(magn_op, exact_U, appro_U)
exp_count = exp_count_LC(r, n, 2*n)
elif ob_type == 'multi':
magn_op = SparsePauliOp.from_sparse_list([('Z', [i], 1) for i in range(0, n)], n)/n
error = ob_error(magn_op, exact_U, appro_U)
exp_count = 2 * (2*n) * r
exp_count_list.append(exp_count)
if verbose: print(f'r={r}; error={error:.6f}; exp_count={exp_count}')
error_list.append(error)
if error > epsilon: r_start = r
else: r_end = r
if r_end - r_start == 0:
print('precision warning!!!')
# raise ValueError('Binary search failed. Please increase the search range.')
print(f'-------- binary search end --------')
# r_abs_err_dict = dict(zip(r_list, [abs(error-epsilon) for error in error_list]))
# r_found = min(r_abs_err_dict, key=r_abs_err_dict.get)
r_found = r_end
r_err_dict = dict(zip(r_list, error_list))
return r_list, error_list, exp_count_list, r_found, r_err_dict
# def linear_loglog_fit(x, y, verbose=False):
# # Define the linear function
# def linear_func(x, a, b):
# return a * x + b
# log_x = np.array([log(n) for n in x])
# log_y = np.array([log(cost) for cost in y])
# # Fit the linear function to the data
# params, covariance = curve_fit(linear_func, log_x, log_y)
# # Extract the parameters
# a, b = params
# # Predict y values
# y_pred = linear_func(log_x, a, b)
# # Print the parameters
# if verbose: print('Slope (a):', a, 'Intercept (b):', b)
# exp_y_pred = [exp(cost) for cost in y_pred]
# return exp_y_pred, a, b
# def plot_fit(ax, x, y, var='n', offset=1.07, verbose=True):
# y_pred_em, a_em, b_em = linear_loglog_fit(x, y)
# if verbose: print(f'a_em: {a_em}; b_em: {b_em}')
# text_a_em = "{:.2f}".format(round(abs(a_em), 4))
# y_pred_em = [exp(cost) for cost in a_em*np.array([log(n) for n in x]) + b_em]
# ax.plot(x, y_pred_em, 'k--', linewidth=1)
# ax.annotate(r'$O(%s^{%s})$' % (var, text_a_em), xy=(x[-1], np.real(y_pred_em)[-1]), xytext=(x[-1]*offset, np.real(y_pred_em)[-1]))
# =====================================================
# =====================================================
def partial_trotter(approx_U, tau, a, pauli_strs, h, J, parity=1, verbose=True):
if verbose: print(pauli_strs)
if len(pauli_strs) == 1:
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs, [h]).to_matrix(False)) @ approx_U
elif len(pauli_strs) == 2:
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs, [h, J]).to_matrix(False)) @ approx_U
elif len(pauli_strs) == 4:
if parity == 1:
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs[:2], [J, h]).to_matrix(False)) @ approx_U
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs[-2:], [h, J]).to_matrix(False)) @ approx_U
elif parity == 2:
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs[-2:], [h, J]).to_matrix(False)) @ approx_U
approx_U = jax.scipy.linalg.expm(-1j * tau * a * SparsePauliOp(pauli_strs[:2], [J, h]).to_matrix(False)) @ approx_U
else:
raise ValueError('Not implemented yet.')
# Ham = sum([SparsePauliOp(p_str, [h]).to_matrix(False) if set(list(p_str))-{'I'}=={'X'} else SparsePauliOp(p_str, [J]).to_matrix(False) for p_str in pauli_strs])
# for p_str in list(reversed(pauli_strs)):
# # for p_str in pauli_strs:
# print(p_str)
# if set(list(p_str))-{'I'} == {'X'}:
# gate = SparsePauliOp(p_str, [h]).to_matrix(False)
# approx_U = jax.scipy.linalg.expm(-1j * tau * a * gate) @ approx_U
# else:
# gate = SparsePauliOp(p_str, [J]).to_matrix(False)
# approx_U = jax.scipy.linalg.expm(-1j * tau * a * gate) @ approx_U
return approx_U
def exp_count_LC(r, n_qubits, n_terms):
exp_count = 0
for i in range(1, r+1):
# print('i: ', i)
if i < int(n_qubits/2):
exp_count += (4 * i - 1) * 2
elif i == int(n_qubits/2):
exp_count += (4 * i - 1) * 2 - 1
else:
exp_count += n_terms * 2
return exp_count
def local_ob(ob_index, n):
## define the local observable
single_ob = dict({'X': ob_index})
print(f'single local observabel: {single_ob}')
ob_string = 'X' * len(ob_index) + 'I' * (n - len(ob_index))
# ob = SparsePauliOp(['I'*(ob_index - 1) + 'X' + 'I'*(ising1d.n_qubits - ob_index - 1)], [1])
ob = SparsePauliOp([ob_string], [1])
print('observable: ', ob)
return ob, single_ob
def lightcone_bound_simplified(model, r, verbose=False):
bounds = (model.r_saturate/r)**3 * np.array(model.lightcone_segment_error_bounds)
if verbose: print('bound list: ', bounds)
result = sum(bounds) + bounds[-1] * (r - len(bounds))
print(f'r={r}, bound={result:.6f}')
return result
def lightcone_bound(model, exp_list, t, r, ord=2, loose=True, verbose=False):
# ising1d.H_dict
lc_bound = 0
lc_bound_r_list = []
ob_norm = 1
previous_pstrs = ['dummy']
for pstrs in exp_list:
# even/odd?
h_list = [sum([model.H_dict[pstr] for pstr in pstrs[0]]), sum([model.H_dict[pstr] for pstr in pstrs[1]])]
if verbose: print('h_list: ', h_list)
# print('h_list: ', h_list)
## t/2r ???
if pstrs == previous_pstrs:
print(pstrs)
lc_bound_r = lc_bound_r
else:
# print(h_list)
if loose:
lc_bound_r = 2 * ob_norm * analytic_loose_commutator_bound(len(pstrs[0]), model.J, model.h, t/r)
else:
lc_bound_r = 2 * ob_norm * tight_bound([ham.to_matrix() for ham in h_list], ord, t/r, 1)
lc_bound_r_list.append(lc_bound_r)
if verbose: print(f'light cone error bound (one step) = {lc_bound_r}')
lc_bound += lc_bound_r
previous_pstrs = pstrs
if verbose:
print(f'Lightcone Trotter error bound: {lc_bound:.6f}')
model.partition('parity')
if loose:
print('Standard Trotter bound: ', 2 * ob_norm * analytic_loose_commutator_bound(model.n_qubits, model.J, model.h, t/r))
else:
print('Standard Trotter bound: ', 2 * ob_norm * tight_bound(model.H_parity, ord, t, r))
return lc_bound, lc_bound_r_list
def lightcone_trotter(model, ob, r, t, empirical=True, verbose=False):
Gamma = 2
a = 1/2
b = 0
tau = t/r
n = model.n_qubits
approx_U_LC = np.eye(2**model.n_qubits)
exp_count = 0
exp_list = []
max_LC = len(model.h_LC_decomp)
if verbose: print(max_LC, 'max_LC')
for j in range(1, r+1):
if verbose: print(f'============== j={j} (r={r}); exp_count={exp_count} ==============')
temp_list = []
for v in range(1, Gamma+1):
if v + b < n:
temp_index = (v + b) / 2
else:
temp_index = int(n/2)
if verbose: print(f'----v={v}, b={b}, (v+b)/2={temp_index}----')
inner_temp_list = []
if (v + b) % 2 != 0:
# print(f'v + b = {v} + {b} is odd')
# for gamma in range(1, ceil(temp_index)+1):
for gamma in range(1, floor(temp_index)+1):
if 2*gamma < max_LC:
temp = model.h_LC_decomp[2*gamma]
# even_list = even_list + temp
if empirical:
approx_U_LC = partial_trotter(approx_U_LC, tau, a, temp, model.h, model.J, parity=v, verbose=verbose)
exp_count += len(temp)
else:
break
if verbose: print('............')
for gamma in range(1, ceil(temp_index)+1):
if 2*gamma-1 < max_LC:
temp = model.h_LC_decomp[2*gamma-1]
inner_temp_list = inner_temp_list + temp
if empirical:
approx_U_LC = partial_trotter(approx_U_LC, tau, a, temp, model.h, model.J, parity=v, verbose=verbose)
exp_count += len(temp)
else:
break
else:
for gamma in range(1, ceil(temp_index)+1):
if 2*gamma-1 < max_LC:
temp = model.h_LC_decomp[2*gamma-1]
if empirical:
approx_U_LC = partial_trotter(approx_U_LC, tau, a, temp, model.h, model.J, parity=v, verbose=verbose)
exp_count += len(temp)
else:
break
if verbose: print('............')
for gamma in range(1, floor(temp_index)+1):
if 2*gamma < max_LC:
temp = model.h_LC_decomp[2*gamma]
inner_temp_list = inner_temp_list + temp
if empirical:
approx_U_LC = partial_trotter(approx_U_LC, tau, a, temp, model.h, model.J, parity=v, verbose=verbose)
exp_count += len(temp)
else:
break
temp_list.append(inner_temp_list)
exp_list.append(temp_list)
b = b + Gamma
if verbose: print('exponential list: \n', exp_list)
if empirical:
error = ob_error(ob, model.exact_U, approx_U_LC)
print(f'r={r}; empirical ob_error = {error:.6f}; exp_count(LC)={exp_count}')
else:
error = 2
if verbose: print(f'r={r}; exp_count(LC)={exp_count}; no Trotter error evaluated')
return error, exp_count, exp_list
def standard_trotter(h_list, t, r, ord=2, verbose=False):
"""
[todo higher order]
Args:
h_list (list): A list of Hamiltonian terms (even/odd parity partition).
t (float): The time step.
Returns:
"""
# list_U = [ssla.expm(-1j * (t / r) * herm) for herm in ising_1d.h_list]
if ord == 2:
list_U = [jax.scipy.linalg.expm(-1j * (t / (2*r)) * herm.toarray()) for herm in h_list]
if verbose: print('----expm Herm finished----')
appro_U_dt = list_U[0] @ list_U[1]
if verbose: print('----matrix product finished----')
appro_U = jnp.linalg.matrix_power(appro_U_dt @ list_U[1] @ list_U[0], r)
# appro_U = jnp.linalg.matrix_power(appro_U_dt, r)
# appro_U = matrix_power(appro_U_dt, r)
# appro_U = matrix_power(appro_U_dt.toarray(), r)
if verbose: print('----matrix power finished----')
return appro_U
def ob_error(ob, exact_U, appro_U, norm='spectral'):
"""
Args:
ob (Operator): The observable operator.
exact_U
approx_U:
Returns:
"""
# exact_ob = exact_U @ ob.to_matrix() @ jax.numpy.linalg.inv(exact_U)
# # exact_ob = exact_U @ ob.to_matrix() @ exact_U.conj().T
# appro_ob = appro_U @ ob.to_matrix() @ jax.numpy.linalg.inv(appro_U)
exact_ob =jax.numpy.linalg.inv(exact_U) @ ob.to_matrix() @ exact_U
# exact_ob = exact_U @ ob.to_matrix() @ exact_U.conj().T
appro_ob = jax.numpy.linalg.inv(appro_U) @ ob.to_matrix() @ appro_U
if norm == 'spectral':
error = jnp.linalg.norm(exact_ob - appro_ob, ord=2)
return error
def binary_search_r(model, ob, t, epsilon, search_precision, decompose='standard', type='empirical', r_max=20, verbose=False):
if decompose == 'standard':
h_list = model.H_parity
elif decompose == 'lightcone':
h_list = model.h_LC_decomp
# elif decompose == 'all':
# raise ValueError('Not implemented yet.')
else:
raise ValueError('Not implemented yet.')
exact_U = model.exact_U
n = model.n_qubits
r_start = 1
# r_start = int(n/3)
if type == 'empirical':
r_end = max(1 * n, r_max)
elif type == 'bound':
r_end = max(2 * n, r_max)
ob_norm = norm(ob)
# r_end = 20000
r_list = []
print(f'========== {type.upper()} {decompose.upper()} ==========')
print(f'--------binary search parameters--------')
print(f'binary search range: r_start={r_start}, r_end={r_end} ')
print(f'Trotter error epsilon={epsilon}, binary search precision={100*search_precision}%')
print(f'-------- binary search start --------')
error_list = []
exp_count_list = []
error = 2
while abs(error - epsilon) > epsilon * search_precision and r_end - r_start != 1:
r = int((r_start + r_end) / 2)
r_list.append(r)
if type == 'empirical':
if decompose == 'standard':
appro_U = standard_trotter(h_list, t, r)
# error = jnp.linalg.norm(jnp.array(appro_U - exact_U), ord=2)
error = ob_error(ob, exact_U, appro_U)
exp_count = 2 * model.n_terms * r
elif decompose == 'lightcone':
error, exp_count, exp_list = lightcone_trotter(model, ob, r, t, verbose=verbose)
elif type == 'bound':
if decompose == 'standard':
error = model.standard_error / r**2
# error = 2 * ob_norm * tight_bound(h_list, 2, t, r)
exp_count = 2 * model.n_terms * r
elif decompose == 'lightcone':
# error, exp_count, exp_list = lightcone_trotter(model, ob, r, t, empirical=False, verbose=verbose)
# error = lightcone_bound(model, exp_list, t, r)
error = lightcone_bound_simplified(model, r, verbose=verbose)
exp_count = exp_count_LC(r, n, model.n_terms)
# print('observable error (L terms)', 2 * ob_norm * tight_bound([term.to_matrix() for term in ising1d.all_terms], 2, t, r_bound))
elif type == 'lc_emp':
print(type)
exp_count_list.append(exp_count)
# print('----spectral norm finished----')
if verbose: print(f'r={r}; error={error:.6f}')
error_list.append(error)
if error > epsilon: r_start = r
else: r_end = r
if r_end - r_start == 1:
print('precision warning!!!')
# raise ValueError('Binary search failed. Please increase the search range.')
print(f'-------- binary search end --------')
r_err_dict = dict(zip(r_list, error_list))
r_abs_err_dict = dict(zip(r_list, [abs(error-epsilon) for error in error_list]))
r_found = min(r_abs_err_dict, key=r_abs_err_dict.get)
return r_list, error_list, exp_count_list, r_found
# return r_list, error_list
def plot_binary_search(ax, r_list, trotter_error_list, epsilon, search_precision, n, t, annotation=''):
r_err_dict = dict(zip(r_list, trotter_error_list))
r_abs_err_dict = dict(zip(r_list, [abs(error-epsilon) for error in trotter_error_list]))
r_found = min(r_abs_err_dict, key=r_abs_err_dict.get)
ax.plot(r_list, trotter_error_list, 'o', markersize=6, markeredgecolor='k', markeredgewidth=0.5, label='Binary search - '+annotation)
ax.plot(r_found, r_err_dict[r_found], 'ro', markersize=7, markeredgecolor='k', markeredgewidth=1.5, label='Found - '+annotation)
ax.axhline(y=epsilon, c='k', linestyle='--', linewidth=1.5)
ax.axhline(y=epsilon * (1 + search_precision), c='k', linestyle='--', linewidth=0.5)
ax.axhline(y=epsilon * (1 - search_precision), c='k', linestyle='--', linewidth=0.5)
ax.axvline(x=r_found, c='k', linestyle='--', linewidth=0.5)
# ax.xscale("log")
ax.set_yscale("log")
ax.set_xlabel('Repetition r')
# ax.xticks([r_list[-1]])
# ax.gca().xaxis.set_major_formatter(mpl.ticker.ScalarFormatter(useMathText=False))
ax.set_ylabel(r'Error $||e^{iHt}Oe^{-iHt}-UOU^\dagger||$')
# ax.set_yticks([epsilon])
ax.legend()
# ax.grid()
ax.set_title(f'1D TF Ising model, n={n}, t={t:.2f}, eps={epsilon}')
class transverse_field_ising_1d:
def __init__(self, n: int, J, h, ob_index, t=1, pbc=False, initialize=True, verbose=False):
"""
Constructs the Hamiltonian for the 1D transverse-field Ising model using Qiskit.
Args:
n (int): Number of spins in the chain.
J (float): Coupling constant determining the interaction strength between neighboring spins.
h (float): Strength of the transverse magnetic field.
Returns:
H (Operator): The Hamiltonian operator.
"""
def rotate_str(string :str):
return [string[-shift:] + string[:-shift] for shift in range(len(string)) ]
# shift the string by one to the right
ZZ = 'ZZ' + (n-2) * 'I'
XI = 'X' + (n-1) * 'I'
self.n_qubits = n
self.zz_pstr = rotate_str(ZZ)
self.x_pstr = rotate_str(XI)
if not pbc:
self.zz_pstr = self.zz_pstr[:-1]
self.J = J; self.h = h
self.zz_op = SparsePauliOp(self.zz_pstr, [self.J] * len(self.zz_pstr))
self.x_op = SparsePauliOp(self.x_pstr, [self.h] * len(self.x_pstr))
# self.x = SparsePauliOp(self.transverse, [self.h] * len(self.transverse)).to_matrix()
self.H_op = self.zz_op + self.x_op
self.all_terms = [SparsePauliOp(op, self.J) for op in self.zz_pstr] + [SparsePauliOp(op, self.h) for op in self.x_pstr]
self.n_terms = len(self.all_terms)
self.H_dict = dict(zip(self.zz_pstr+self.x_pstr, self.all_terms))
self.t = t
self.H_mat = self.H_op.to_matrix(True)
self.partition('parity', verbose=verbose)
if verbose:
print('---------Transverse-field Ising Hamiltonian---------')
print(f'n={n}, J={J}, h={h}')
print('Interaction: ', self.zz_pstr)
print('Transverse: ', self.x_pstr)
# print(SparsePauliOp(self.interaction, [self.J] * len(self.interaction)))
# print('Hamiltonian matrix: \n', self.H_matrix)
if initialize:
## evaluate exact evolution U
if not np.array_equal(sum(self.all_terms).to_matrix(), self.H_mat.toarray()):
raise ValueError('Hamiltonian is not constructed correctly.')
print('---------------------initialization start@---------------------')
self.exact_evolution(t)
## even/odd partition (grouping)
## lightcone decompositiona of the Hamiltonian
self.ob, self.ob_dict = local_ob(ob_index, n)
print('evaluation: standard error bound')
self.standard_error_bound(verbose=verbose)
print('evaluation: lightcone decompose')
self.lightcone_decompose(self.ob_dict, verbose=verbose)
print('evalution: lightcone error bound')
self.lightcone_error_bound(verbose=verbose)
print('---------------------initialization done---------------------')
def exact_evolution(self, t):
## evaluate exact U = exp(-iHt)
# exact_U = ssla.expm(-1j * t * sum(ising1d.h_list))
self.exact_U = jax.scipy.linalg.expm(-1j * t * self.H_mat.toarray())
# exact_U = scipy.linalg.expm(-1j * t * ising1d.H_matrix.toarray())
print(f'----expm: exact U evaluated (t={t})----')
def partition(self, method, verbose=False):
"""
Partitions the Hamiltonian into two parts, the interaction and the external field part.
Args:
method
Returns:
H (Operator): The Hamiltonian operator.
"""
if method == 'parity':
self.zz_even = self.zz_pstr[::-1][::2]
self.zz_odd = self.zz_pstr[::-1][1::2]
self.x_even = self.x_pstr[::-1][::2]
self.x_odd = self.x_pstr[::-1][1::2]
# self.x_even = self.x_pstr[::2]
# self.x_odd = self.x_pstr[1::2]
self.even_op = SparsePauliOp(self.zz_even, [self.J]*len(self.zz_even)) + SparsePauliOp(self.x_even, [self.h]*len(self.x_even))
self.odd_op = SparsePauliOp(self.zz_odd, [self.J]*len(self.zz_odd)) + SparsePauliOp(self.x_odd, [self.h]*len(self.x_odd))
# self.H_parity = [self.odd_op.to_matrix(True), self.even_op.to_matrix(True)]
self.H_parity = [self.even_op.to_matrix(True), self.odd_op.to_matrix(True)]
if verbose:
print(f'---------({method}) Partitioned Hamiltonian---------')
print('inter_xx_even:', self.zz_even)
print('inter_xx_odd:', self.zz_odd)
print('external_even:', self.x_even)
print('external_odd:', self.x_odd)
def lightcone_decompose(self, ob_dict, verbose=False):
# self.ob_support = [0]
self.ob_support = ob_dict['X']
self.h_LC_decomp = []
self.edge_set = []
def pstr_support(pstr: str):
support = []
for i, c in enumerate(pstr):
if c != 'I':
support.append(i)
return support
def pstr_list_support(pstr_list: list):
support = []
for pstr in pstr_list:
support += pstr_support(pstr)
return set(support)
# int_supp = {p_str: pstr_support(p_str) for p_str in ising_1d.interaction[:self.n_qubits-1]}
self.int_supp = {p_str: pstr_support(p_str) for p_str in self.zz_pstr}
self.ext_supp = {p_str: pstr_support(p_str) for p_str in self.x_pstr}
self.all_terms_supp = {**self.int_supp, **self.ext_supp}
# print(ising_1d.interaction)
if verbose:
print('=============light cone decomposition============')
# print('All terms support dict: ', self.all_terms_supp)
print('Observable support: ', self.ob_support)
print('Interaction term support dict: \n', self.int_supp)
print('Transverse term support dict: \n', self.ext_supp)
for i in range(self.n_qubits + 1):
if verbose: print(f'----------step ({i})---------')
temp = []
if i == 0:
for item in self.all_terms_supp:
if set(self.all_terms_supp[item]).issubset(set(self.ob_support)):
# print(f'$H_S^{(0)}$ = {item}, {all_terms_supp[item]}')
temp.append(item)
# print(temp_int, temp_ext)
self.h_LC_decomp.append(temp)
self.edge_set.append(set(self.ob_support))
# elif i > 0 and i < n:
else:
for item in self.all_terms_supp:
if set(self.all_terms_supp[item]).intersection(set(self.edge_set[i-1])):
# print(item, all_terms_supp[item])
temp.append(item)
if verbose: print(f'Intesect = {temp}')
self.h_LC_decomp.append(sorted(list(set(temp) - set(self.h_LC_decomp[i-1]))))
self.edge_set.append(pstr_list_support(self.h_LC_decomp[i]) - self.edge_set[i-1])
# else:
# print('-----------stop-------------')
# raise ValueError('Not implemented yet.')
if verbose:
print(f'$H_S^{(i)}$ = {self.h_LC_decomp[i]}; $E_S^{(i)}$ = {self.edge_set[i]}')
if len(self.edge_set[i]) == 0:
break
# print('H light-cone decompose: ', h_LC_decomp)
# II. SINGLE LOCAL OBSERVABLE partition
self.h_LC_decomp[1] = self.h_LC_decomp[0] + self.h_LC_decomp[1]
def lightcone_error_bound(self, verbose=False):
self.r_saturate = int(self.n_qubits/2) + 1
_, _, self.LC_gates = lightcone_trotter(self, self.ob, self.r_saturate, self.t, empirical=False, verbose=verbose)
self.lightcone_segment_error_bounds = lightcone_bound(self, self.LC_gates, self.t, self.r_saturate, verbose=verbose)[1]
def standard_error_bound(self, loose=True, verbose=False):
if loose:
self.standard_error = 2 * norm(self.ob) * analytic_loose_commutator_bound(self.n_qubits, self.J, self.h, self.t)
else:
self.standard_error = 2 * norm(self.ob) * tight_bound(self.H_parity, 2, self.t, 1)
if verbose: print(f'Standard Trotter error bound (one step): {self.standard_error:.6f}')
# return lightcone_segment_error_bounds
def purge_pauli(pauli_list):
new_pauli_list = []
for pauli in pauli_list:
pauli = pauli.simplify()
# print(pauli)
if len(pauli.coeffs)>1 or abs(pauli.coeffs[0])>1e-8:
new_pauli_list.append(pauli)
return new_pauli_list
def commutator_bound(h_list, ord, t, r, type='tight'):
# print(h_list)
err = 0
dt = t/r
if ord == 1:
for index, h1 in enumerate(h_list[:-1]):
# print(index, h1)
if type == 'tight':
# print(sum([h2.to_matrix() for h2 in h_list[index+1:]]), h1.to_matrix())
err += norm(commutator(sum([h2.to_matrix() for h2 in h_list[index+1:]]), h1.to_matrix()))
elif type == 'loose':
for h2 in h_list[index+1:]:
err += norm(commutator(h1, h2))
else:
raise ValueError(f'Unknown type: {type}')
print(f'{type} bound: {err * dt**2 / 2}')
return err * dt**2 / 2
elif ord == 2:
# raise NotImplementedError
c1, c2 = 0, 0
if type == 'tight':
# for index, h1 in enumerate(h_list[:-1]):
# h2sum = sum(h_list[index+1:])
# c1 += norm(commutator(h2sum, commutator(h2sum, h1)))
# c2 += norm(commutator(h1, commutator(h1, h2sum)))
c1 = sum([norm(sum([commutator(h3, sum([commutator(h2, h1) for h2 in h_list[index+1:]])) for h3 in h_list[index+1:]])) for index, h1 in enumerate(h_list[:-1])])
# c2 = sum([norm(commutator(h1, commutator(h1, sum(h_list[index+1:])))) for index, h1 in enumerate(h_list[:-1])])
c2 = sum([norm(commutator(h1, sum([commutator(h1, h2) for h2 in h_list[index+1:]]))) for index, h1 in enumerate(h_list[:-1])])
print(f'c1 (tight)={c1}, c2={c2}')
err = c1 * dt**3 / 12 + c2 * dt**3 / 24
elif type == 'loose':
c1 = sum([sum([norm(commutator(h3, sum([commutator(h2, h1) for h2 in h_list[index+1:]]))) for h3 in h_list[index+1:]]) for index, h1 in enumerate(h_list[:-1])])
c2 = sum([norm(commutator(h1, sum([commutator(h1, h2) for h2 in h_list[index+1:]]))) for index, h1 in enumerate(h_list[:-1])])
print(f'c1 (loose)={c1}, c2={c2}')
err = c1 * dt**3 / 12 + c2 * dt**3 / 24
print(f'{type} bound: {err}')
return err
def commutator(A, B):
return A @ B - B @ A
def norm(A, ord='spectral'):
if ord == 'fro':
return np.linalg.norm(A)
elif ord == 'spectral':
return np.linalg.norm(A, ord=2)
elif ord == 'nuc':
return np.linalg.norm(A, ord='nuc') # nuclear (trace) norm
else:
return np.linalg.norm(A, ord=ord)
# raise ValueError('norm is not defined')
def operator_err(exact, approx, norm='spectral'):
'''
Frobenius norm of the difference between the exact and approximated operator
input:
exact: exact operator
approx: approximated operator
return: error of the operator
'''
if norm == 'fro':
return np.linalg.norm(exact - approx)
elif norm == 'spectral':
return np.linalg.norm(exact - approx, ord=2)
else:
raise ValueError('norm is not defined')
# return np.linalg.norm(exact - approx)/len(exact)
# def commutator_bound(H, t, eps):
# return
def triangle_bound(h, k, t, r):
L = len(h)
if k == 1:
if L == 2:
raise ValueError('k=1 is not defined for L=2')
elif L == 3:
c = norm(commutator(h[0], h[1])) + norm(commutator(h[1], h[2])) + norm(commutator(h[2], h[0]))
error = c * t**2 / (2*r)
return error
def tight_bound(h, order: int, t: float, r: int):
L = len(h)
if order == 1:
a_comm = 0
for i in range(0, L):
# temp = np.zeros(2**n_qubits, dtype=complex)
temp = np.zeros(h[0].shape, dtype=complex)
for j in range(i + 1, L):
temp += commutator(h[i], h[j])
a_comm += norm(temp)
error = a_comm * t**2 / (2*r)
elif order == 2:
c1 = 0
c2 = 0
for i in range(0, L):
temp = np.zeros(h[0].shape, dtype=complex)
for j in range(i + 1, L):
temp += h[j]
# h_sum3 = sum(h[k] for k in range(i+1, L))
# print(h_sum3.shape)
# h_sum2 = sum(h[k] for k in range(i+1, L))
c1 += norm(commutator(temp, commutator(temp, h[i])))
# c1 = norm(commutator(h[0]+h[1], commutator(h[1]+h[2], h[0]))) + norm(commutator(h[2], commutator(h[2], h[1])))
# c2 = norm(commutator(h[0], commutator(h[0],h[1]+h[2]))) + norm(commutator(h[1], commutator(h[1], h[2])))
c2 += norm(commutator(h[i], commutator(h[i], temp)))
print(f'c1 (tight bound by matrix)={c1}, c2={c2}')
error = c1 * t**3 / r**2 / 12 + c2 * t**3 / r**2 / 24
else:
raise ValueError(f'higer order (order={order}) is not defined')
return error
def interference_bound(H, t, r):
# Layden_2022_First-Order Trotter Error from a Second-Order Perspective
try:
assert len(H) == 2
except:
raise ValueError('The Hamiltonian contains not exactly 2 terms')
h1 = H[0]
h2 = H[1]
C1 = min(norm(h1), norm(h2))
C2 = 0.5 * norm(commutator(h1, h2))
S = [norm(commutator(h1, commutator(h1, h2))), norm(commutator(h2, commutator(h2, h1)))]
C3 = 1 / 12 * (min(S) + 0.5 * max(S))
e1 = C1 * t / r
e2 = C2 * t**2 / r
e3 = C3 * t**3 / r**2
bound = min(e2, e1 + e3, 2 * len(h1))
return bound, e1, e2, e3