From 49aaf57e68786579875c1309cd05d1bcdab90109 Mon Sep 17 00:00:00 2001 From: Michael Ingold Date: Fri, 8 Nov 2024 08:03:04 -0500 Subject: [PATCH] Use a new DifferentiationMethod type for specifying derivative methods (#122) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Add JacobianMethod types * Change JacobianMethod to DifferentiationMethod * Add a third argument to jacobian for DiffMethod for dispatch * Remove dead line * Remove obsolete analytic jacobian for BezierCurve * Add default step size if unspecified * Convert differential to three-argument with default FiniteDiff method * Bigfix * Add two-arg Jacobian pointing to FD * Apply formatting suggestion Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Apply suggestion Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * Add a dt argument * Update docstring API * Add dt kwargs * Add missing params * Add dt kwargs (with TODOs) * Consolidate kwarg naming * Update src/differentiation.jl Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * Add exports * Tweak suggested naming [skip CI] * Update Line methods to use an internal differential method * Bump version to v0.16.0-DEV * Add block for DifferentiationMethods * Drop abstract type * Add diff_method arguments * Change dt to diff_method * Prepare to revert jacobian of BezierCurve (pending new benchmarks) * Bump CI * Add BézierCurve to benchmarks (#124) (#126) * Add Bézier entry * Missing comma, added newline * Make item implicitly Unitful * Make test item explicit to avoid reference errors * Formatting * Reformat range * Apply format suggestion --------- Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Reduce scald * Activate specialized Jacobian * Define an Analytic method and update jacobian of Bezier to it * Typo [skip CI] * Typo * Update src/specializations/BezierCurve.jl Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Implement has_analytic * Bugfix * Enable analytical for BezierCurve [skip CI] * Implement default_method * Fix arg definition * Update arg type * Add methods on instances and types * Add tests for DifferentiationMethods * Use default_method in _integral methods * Use default_method in Bezier methods, improve docstring * Improve docstrings * Explicit namespace for test of non-exported function * Fix typo * Fix copy/paste error * Add tests for default_method * Type vs instance * Export Analytical * Typo * Typo * Parameterize Bezier type * Apply suggestions from code review Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Redefine Line, Plane, and Ray specializations as Analytical * Redefine Triangle and Tetrahedron specializations as Analytical * Try new solution (cant dispatch on kwarg types) * Add jacobian code sections * Add guarantees * Move new utilities to utils and rename with prefix underscore * Typo * Update tests * Update name * Update function name * Update comment * Update name * Add better docstrings * Bugfix - error not actually thrown * Split DifferentiationMethod into separate testitem * Tweak include order * Formatting changes * Remove redundant docstrings * Add docstrings for Ring and Rope, update for Bezier * Apply suggestions from code review Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * (WIP) Add a new kwarg section under Usage * Clarify Usage section * Formatting * Add a WIP differential forms explainer * Rename page and add some structure * Add new page to directory * Update index page with README contents * Update first two sections * Finished version 0 of How It Works * Move How it Works into new Dev Notes section * Properly enforce FiniteDiff FP rules * Bugfix - restore G param * Bugfix - tuple to ntuple * Remove Unicode from math blocks * New default constructors for FiniteDifference * Implement two-arg _default_method with FP type * Reorder kwargs and switch FP to T * Revert to single-arg _default_method * Change jacobian parameterization * Remove ununsed type param * Remove unneeded type param * Remove remnant two-arg default call * Clarify _guarantee_analytical arg types * Test externalizing partial derivative function * Re-internalize partial derivative function * Remove errant character * Apply format suggestions [skip ci] Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Apply suggestions from code review [skip ci] Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * Try new parameterization * Remove obsolete comment * Apply suggestions from code review Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> * Consolidate information on specializations * Apply suggestion * Apply suggestion Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> --------- Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Joshua Lampert <51029046+JoshuaLampert@users.noreply.github.com> --- Project.toml | 2 +- README.md | 16 ++- benchmark/benchmarks.jl | 6 +- docs/make.jl | 8 +- docs/src/how_it_works.md | 76 +++++++++++ docs/src/index.md | 37 ++++- docs/src/{triangle.md => specializations.md} | 16 ++- src/MeshIntegrals.jl | 6 +- src/differentiation.jl | 135 ++++++++++++------- src/integral.jl | 41 +++--- src/specializations/BezierCurve.jl | 79 +++++++++-- src/specializations/Line.jl | 31 +++-- src/specializations/Plane.jl | 21 ++- src/specializations/Ray.jl | 21 ++- src/specializations/Ring.jl | 18 +++ src/specializations/Rope.jl | 18 +++ src/specializations/Tetrahedron.jl | 17 ++- src/specializations/Triangle.jl | 48 +++---- src/utils.jl | 28 ++++ test/utils.jl | 32 +++++ 20 files changed, 509 insertions(+), 147 deletions(-) create mode 100644 docs/src/how_it_works.md rename docs/src/{triangle.md => specializations.md} (61%) diff --git a/Project.toml b/Project.toml index 7e9cfe3b..5a1d4711 100644 --- a/Project.toml +++ b/Project.toml @@ -1,6 +1,6 @@ name = "MeshIntegrals" uuid = "dadec2fd-bbe0-4da4-9dbe-476c782c8e47" -version = "0.15.2" +version = "0.16.0-DEV" [deps] CliffordNumbers = "3998ac73-6bd4-4031-8035-f167dd3ed523" diff --git a/README.md b/README.md index 68cc0ce0..1e51d48c 100644 --- a/README.md +++ b/README.md @@ -20,27 +20,31 @@ These solvers have support for integrand functions that produce scalars, vectors ## Usage +### Basic + ```julia integral(f, geometry) ``` Performs a numerical integration of some integrand function `f(p::Meshes.Point)` over the domain specified by `geometry`. A default integration method will be automatically selected according to the geometry: `GaussKronrod()` for 1D, and `HAdaptiveCubature()` for all others. ```julia -integral(f, geometry, rule, FP=Float64) +integral(f, geometry, rule) ``` Performs a numerical integration of some integrand function `f(p::Meshes.Point)` over the domain specified by `geometry` using the specified integration rule, e.g. `GaussKronrod()`. -Optionally, a fourth argument can be provided to specify the floating point precision level desired. This setting can be manipulated if your integrand function produces outputs with alternate floating point precision (e.g. `Float16`, `BigFloat`, etc) AND you'd prefer to avoid implicit type promotions. +Additionally, several optional keyword arguments are defined in [the API](https://juliageometry.github.io/MeshIntegrals.jl/stable/api/) to provide additional control over the integration mechanics. + +### Aliases ```julia lineintegral(f, geometry) surfaceintegral(f, geometry) volumeintegral(f, geometry) ``` -Alias functions are provided for convenience. These are simply wrappers for `integral` that first validate that the provided `geometry` has the expected number of parametric/manifold dimensions. Like with `integral` in the examples above, the `rule` can also be specified as a third-argument. -- `lineintegral` for curve-like geometries or polytopes (e.g. `Segment`, `Ray`, `BezierCurve`, `Rope`, etc) -- `surfaceintegral` for surfaces (e.g. `Disk`, `Sphere`, `CylinderSurface`, etc) -- `volumeintegral` for (3D) volumes (e.g. `Ball`, `Cone`, `Torus`, etc) +Alias functions are provided for convenience. These are simply wrappers for `integral` that also validate that the provided `geometry` has the expected number of parametric dimensions. Like with `integral`, a `rule` can also optionally be specified as a third argument. +- `lineintegral` is used for curve-like geometries or polytopes (e.g. `Segment`, `Ray`, `BezierCurve`, `Rope`, etc) +- `surfaceintegral` is used for surfaces (e.g. `Disk`, `Sphere`, `CylinderSurface`, etc) +- `volumeintegral` is used for (3D) volumes (e.g. `Ball`, `Cone`, `Torus`, etc) # Demo diff --git a/benchmark/benchmarks.jl b/benchmark/benchmarks.jl index 2ec3cf17..d830f578 100644 --- a/benchmark/benchmarks.jl +++ b/benchmark/benchmarks.jl @@ -28,7 +28,7 @@ geometries = ( SUITE["Integrals"] = let s = BenchmarkGroup() for (int, rule, geometry) in Iterators.product(integrands, rules, geometries) n1, n2, N = geometry.name, "$(int.name) $(rule.name)", rule.N - s[n1][n2] = @benchmarkable integral($int.f, $geometry.item, $rule.rule) evals=N + s[n1][n2] = @benchmarkable integral($int.f, $geometry.item, $rule.rule) end s end @@ -41,8 +41,8 @@ sphere = Sphere(Point(0, 0, 0), 1.0) differential = MeshIntegrals.differential SUITE["Differentials"] = let s = BenchmarkGroup() - s["Jacobian"] = @benchmarkable jacobian($sphere, $(0.5, 0.5)) evals=1000 - s["Differential"] = @benchmarkable differential($sphere, $(0.5, 0.5)) evals=1000 + s["Jacobian"] = @benchmarkable jacobian($sphere, $(0.5, 0.5)) evals=10 + s["Differential"] = @benchmarkable differential($sphere, $(0.5, 0.5)) evals=10 s end diff --git a/docs/make.jl b/docs/make.jl index 988736cb..fb2f4507 100644 --- a/docs/make.jl +++ b/docs/make.jl @@ -4,8 +4,7 @@ using MeshIntegrals # Dynamically set all files in subdirectories of the source directory to include all files in these subdirectories. # This way they don't need to be listed explicitly. SPECIALIZATIONS_FILES = joinpath.(Ref("specializations"), - readdir(joinpath(dirname(@__DIR__), "src", - "specializations"))) + readdir(joinpath(dirname(@__DIR__), "src", "specializations"))) makedocs( sitename = "MeshIntegrals.jl", @@ -15,8 +14,9 @@ makedocs( "Support Matrix" => "supportmatrix.md", "Example Usage" => "usage.md" ], - "Derivations" => [ - "Integrating a Triangle" => "triangle.md" + "Developer Notes" => [ + "How it Works" => "how_it_works.md", + "Specializations" => "specializations.md" ], "Public API" => "api.md" ] diff --git a/docs/src/how_it_works.md b/docs/src/how_it_works.md new file mode 100644 index 00000000..3f230427 --- /dev/null +++ b/docs/src/how_it_works.md @@ -0,0 +1,76 @@ +# How it Works (By Example) + +## Example Problem + +Let $f$ be a function of position $\bar{r}$ in some space. +```julia +function f(r̄::Meshes.Point) + x, y, z = to(r̄) + ... +end +``` + +Let the integration domain be the space (a ball) enclosed by a sphere centered on the origin with a radius of 5 meters. +```julia +center = Meshes.Point(0u"m", 0u"m", 0u"m") +radius = 5.0u"m" +ball = Meshes.Ball(center, radius) +``` + +This integral is often expressed abstractly as simply the following, where the triple integral signs and $\text{d}V$ indicate that the integration domain is some three-dimensional volume. +```math +\iiint f(\bar{r}) ~ \text{d}V +``` + +Integrals like this are often solved manually by selecting an appropriate coordinate system and limits that neatly represent the integration domain, e.g. +```math +\int_0^{\pi} \int_0^{2\pi} \int_0^{5} f(\bar{r}) ~ \text{d}\rho~\text{d}\theta~\text{d}\phi +``` + +This works great for simple geometries, but requires integration code that is geometry-specific. This package leverages parametric functions defined in Meshes.jl and differential forms to define integral methods that are general solutions for all geometries. + +## [Parametric Functions](@id how-parametric) + +Every supported `Meshes.Geometry` type is defined as having a parametric function that maps from a local parametric coordinate system to every point on the geometry. Curve-like geometries will have a single parametric dimension, surfaces will have two dimensions, and volumes will have three dimensions; this can be checked for a particular geometry via `Meshes.paramdim(geometry)`. + +For consistency across geometry types, with [some notable exceptions](@ref specializations), these parametric functions are defined to take coordinates inside a normalized range $[0,1]$. In the example case of `ball`, Meshes.jl defines a parametric function mapped in normalized spherical coordinates $(t_\rho, ~t_\theta, ~t_\phi)$. We find, then: +```julia +Meshes.paramdim(ball) == 3 # a volume + +ball(tρ, tθ, tφ) # for args in range [0, 1], maps to a corresponding Meshes.Point + +ball(0, tθ, tφ) == center +``` + +In effect, we can now use the geometry itself as a function that maps from three normalized ($0 \le t \le 1$) arguments to every point on the geometry. For the sake of generalization, let this parametric function be called $g$. +```math +\text{g}: (t_1,~t_2,~t_3) ~\mapsto~ \text{Point}\big[ x, ~y, ~z \big] +``` + +## Differential Forms + +Using differential forms, the general solution for integrating a geometry with three parametric dimensions ($t_1$, $t_2$, and $t_3$) is +```math +\iiint f(r̄) ~ \text{d}V = \iiint f(\bar{r}) ~ \bar{\text{d}t_1} \wedge \bar{\text{d}t_2} \wedge \bar{\text{d}t_3} +``` + +This resultant differential (volume) element is formed at each point in the integration domain by taking [the Jacobian](https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant) of the parametric function. +```math +\mathbf{J}_f = \begin{bmatrix} \bar{\text{d}t_1} & \bar{\text{d}t_2} & \bar{\text{d}t_3} \end{bmatrix} +``` +where +```math +\bar{\text{d}t_n} = \frac{\partial}{\partial t_n} ~ \text{g}(t_1,~t_2,~t_3) +``` + +Each of these partial derivatives is a vector representing the direction that changing each parametric function argument will move the resultant point. The differential element ($E$) size is then calculated using geometric algebra as the magnitude of the exterior product ($\wedge$) of these three vectors. +```math +E(t_1,~t_2,~t_3) = \left\| \bar{\text{d}t_1} \wedge \bar{\text{d}t_2} \wedge \bar{\text{d}t_3} \right\| +``` + +Finally, we use the parametric function itself, $g$, as a map to all points $\bar{r}$ in the integration domain. Since `Meshes.Geometry` parametric functions all operate on normalized domains, we can now solve any volume integral as simply +```math +\int_0^1 \int_0^1 \int_0^1 f\Big(\text{g}\big(t_1,~t_2,~t_3\big)\Big) ~ E(t_1,~t_2,~t_3) ~ \text{d}t_1 ~ \text{d}t_2 ~ \text{d}t_3 +``` + +This form of integral can be trivially generalized to support $n$-dimensional geometries in a form that enables the use of a wide range of numerical integration libraries. diff --git a/docs/src/index.md b/docs/src/index.md index 52edc831..f947eb64 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -10,5 +10,38 @@ [![Coveralls](https://coveralls.io/repos/github/JuliaGeometry/MeshIntegrals.jl/badge.svg?branch=main)](https://coveralls.io/github/JuliaGeometry/MeshIntegrals.jl?branch=main) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl) -**MeshIntegrals.jl** is a Julia library that leverages differential forms to implement fast -and easy numerical integration of field equations over geometric domains. + +**MeshIntegrals.jl** uses differential forms to enable fast and easy numerical integration of arbitrary integrand functions over domains defined via [**Meshes.jl**](https://github.com/JuliaGeometry/Meshes.jl) geometries. This is achieved using: +- Gauss-Legendre quadrature rules from [**FastGaussQuadrature.jl**](https://github.com/JuliaApproximation/FastGaussQuadrature.jl): `GaussLegendre(n)` +- H-adaptive Gauss-Kronrod quadrature rules from [**QuadGK.jl**](https://github.com/JuliaMath/QuadGK.jl): `GaussKronrod(kwargs...)` +- H-adaptive cubature rules from [**HCubature.jl**](https://github.com/JuliaMath/HCubature.jl): `HAdaptiveCubature(kwargs...)` + +These solvers have support for integrand functions that produce scalars, vectors, and [**Unitful.jl**](https://github.com/PainterQubits/Unitful.jl) `Quantity` types. While HCubature.jl does not natively support `Quantity` type integrands, this package provides a compatibility layer to enable this feature. + +## Usage + +### Basic + +```julia +integral(f, geometry) +``` +Performs a numerical integration of some integrand function `f(p::Meshes.Point)` over the domain specified by `geometry`. A default integration method will be automatically selected according to the geometry: `GaussKronrod()` for 1D, and `HAdaptiveCubature()` for all others. + +```julia +integral(f, geometry, rule) +``` +Performs a numerical integration of some integrand function `f(p::Meshes.Point)` over the domain specified by `geometry` using the specified integration rule, e.g. `GaussKronrod()`. + +Additionally, several optional keyword arguments are defined in [the API](https://juliageometry.github.io/MeshIntegrals.jl/stable/api/) to provide additional control over the integration mechanics. + +### Aliases + +```julia +lineintegral(f, geometry) +surfaceintegral(f, geometry) +volumeintegral(f, geometry) +``` +Alias functions are provided for convenience. These are simply wrappers for `integral` that also validate that the provided `geometry` has the expected number of parametric dimensions. Like with `integral`, a `rule` can also optionally be specified as a third argument. +- `lineintegral` is used for curve-like geometries or polytopes (e.g. `Segment`, `Ray`, `BezierCurve`, `Rope`, etc) +- `surfaceintegral` is used for surfaces (e.g. `Disk`, `Sphere`, `CylinderSurface`, etc) +- `volumeintegral` is used for (3D) volumes (e.g. `Ball`, `Cone`, `Torus`, etc) diff --git a/docs/src/triangle.md b/docs/src/specializations.md similarity index 61% rename from docs/src/triangle.md rename to docs/src/specializations.md index a0e53d0c..dc873601 100644 --- a/docs/src/triangle.md +++ b/docs/src/specializations.md @@ -1,4 +1,18 @@ -# Integrating a Triangle +# [Specializations](@id specializations) + +There are several notable exceptions to how Meshes.jl defines [parametric functions](@ref how-parametric). +- `Meshes.ConeSurface` is essentially a composite type and has a parametric function that only maps the conical portion of the geometry, so the `Meshes.Disk` base element has to be integrated separately. +- `Meshes.CylinderSurface` is essentially a composite type and has a parametric function that only maps the cylindrical portion of the geometry, so the `Meshes.Disk` element has to be integrated separately. +- `Meshes.FrustumSurface` is essentially a composite type and has a parametric function that only maps the cylindrical portion of the geometry, so the top and bottom `Meshes.Disk` elements have to be integrated separately. +- `Meshes.Line` represents a line of infinite length that passes through two points, and it has a parametric function that is valid on the domain $(-\infty, \infty)$. +- `Meshes.Plane` represents a plane of infinite extent, and it has a parametric function that is valid on the domain $(-\infty, \infty)^2$. +- `Meshes.Ray` represents a line that begins at a point and extends in a particular direction with infinite length, and it has a parametric function that is valid on the domain $[0, \infty)$. +- `Meshes.Ring` is a composite type that lacks a parametric function, but can be decomposed into `Meshes.Segment`s and then integrated by adding together the individual integrals. +- `Meshes.Rope` is a composite type that lacks a parametric function, but can be decomposed into `Meshes.Segment`s and then integrated by adding together the individual integrals. +- `Meshes.Triangle` has a parametric function that takes coordinates on a 2D barycentric coordinate system. So, for `(::Meshes.Triangle)(t1, t2)`, the coordinates must obey: $t_1, t_2 \in [0,1]$ where $t_1 + t_2 \le 1$. +- `Meshes.Tetrahedron` has a parametric function that takes coordinates on a 3D barycentric coordinate system. So, for `(::Meshes.Tetrahedron)(t1, t2)`, the coordinates must obey: $t_1, t_2, t_3 \in [0,1]$ where $t_1 + t_2 + t_3 \le 1$. + +## Triangle For a specified `Meshes.Triangle` surface with area $A$, let $u$ and $v$ be Barycentric coordinates that span the surface. ```math diff --git a/src/MeshIntegrals.jl b/src/MeshIntegrals.jl index 19228769..5fbac40f 100644 --- a/src/MeshIntegrals.jl +++ b/src/MeshIntegrals.jl @@ -9,10 +9,10 @@ import LinearAlgebra import QuadGK import Unitful -include("utils.jl") - include("differentiation.jl") -export jacobian +export DifferentiationMethod, Analytical, FiniteDifference, jacobian + +include("utils.jl") include("integration_rules.jl") export IntegrationRule, GaussKronrod, GaussLegendre, HAdaptiveCubature diff --git a/src/differentiation.jl b/src/differentiation.jl index acb580f1..78bd7952 100644 --- a/src/differentiation.jl +++ b/src/differentiation.jl @@ -1,42 +1,97 @@ ################################################################################ -# Jacobian and Differential Elements +# DifferentiationMethods ################################################################################ """ - jacobian(geometry, ts; ε=1e-6) + DifferentiationMethod -Calculate the Jacobian of a geometry at some parametric point `ts` using a simple -finite-difference approximation with step size `ε`. +A category of types used to specify the desired method for calculating derivatives. +Derivatives are used to form Jacobian matrices when calculating the differential +element size throughout the integration region. + +See also [`FiniteDifference`](@ref), [`Analytical`](@ref). +""" +abstract type DifferentiationMethod end + +""" + FiniteDifference(ε=1e-6) + +Use to specify use of a finite-difference approximation method with a step size +of `ε` for calculating derivatives. +""" +struct FiniteDifference{T <: AbstractFloat} <: DifferentiationMethod + ε::T +end + +# Default constructors +FiniteDifference{T}() where {T <: AbstractFloat} = FiniteDifference{T}(T(1e-6)) +FiniteDifference() = FiniteDifference{Float64}() + +""" + Analytical() + +Use to specify use of analytically-derived solutions for calculating derivatives. +These solutions are currently defined only for a subset of geometry types. + +# Supported Geometries: +- `BezierCurve` +- `Line` +- `Plane` +- `Ray` +- `Tetrahedron` +- `Triangle` +""" +struct Analytical <: DifferentiationMethod end + +# Future Support: +# struct AutoEnzyme <: DifferentiationMethod end +# struct AutoZygote <: DifferentiationMethod end + +################################################################################ +# Jacobian +################################################################################ + +""" + jacobian(geometry, ts[, diff_method]) + +Calculate the Jacobian of a `geometry`'s parametric function at some point `ts`. +Optionally, direct the use of a particular differentiation method `diff_method`; by default +use analytic solutions where possible and finite difference approximations +otherwise. # Arguments - `geometry`: some `Meshes.Geometry` of N parametric dimensions - `ts`: a parametric point specified as a vector or tuple of length N -- `ε`: step size to use for the finite-difference approximation +- `diff_method`: the desired [`DifferentiationMethod`](@ref) to use """ +function jacobian( + geometry::G, + ts::Union{AbstractVector{T}, Tuple{T, Vararg{T}}} +) where {G <: Geometry, T <: AbstractFloat} + return jacobian(geometry, ts, _default_method(G)) +end + function jacobian( geometry::Geometry, - ts::V; - ε = 1e-6 -) where {V <: Union{AbstractVector, Tuple}} + ts::Union{AbstractVector{T}, Tuple{T, Vararg{T}}}, + diff_method::FiniteDifference +) where {T <: AbstractFloat} Dim = Meshes.paramdim(geometry) if Dim != length(ts) throw(ArgumentError("ts must have same number of dimensions as geometry.")) end - T = eltype(ts) - ε = T(ε) - # Get the partial derivative along the n'th axis via finite difference # approximation, where ts is the current parametric position - function ∂ₙr(ts, n) + function ∂ₙr(ts, n, ε) # Build left/right parametric coordinates with non-allocating iterators left = Iterators.map(((i, t),) -> i == n ? t - ε : t, enumerate(ts)) right = Iterators.map(((i, t),) -> i == n ? t + ε : t, enumerate(ts)) # Select orientation of finite-diff - if ts[n] < T(0.01) + if ts[n] < 0.01 # Right return (geometry(right...) - geometry(ts...)) / ε - elseif T(0.99) < ts[n] + elseif 0.99 < ts[n] # Left return (geometry(ts...) - geometry(left...)) / ε else @@ -45,37 +100,7 @@ function jacobian( end end - return ntuple(n -> ∂ₙr(ts, n), Dim) -end - -function jacobian( - bz::Meshes.BezierCurve, - ts::V -) where {V <: Union{AbstractVector, Tuple}} - t = only(ts) - # Parameter t restricted to domain [0,1] by definition - if t < 0 || t > 1 - throw(DomainError(t, "b(t) is not defined for t outside [0, 1].")) - end - - # Aliases - P = bz.controls - N = Meshes.degree(bz) - - # Ensure that this implementation is tractible: limited by ability to calculate - # binomial(N, N/2) without overflow. It's possible to extend this range by - # converting N to a BigInt, but this results in always returning BigFloat's. - N <= 1028 || error("This algorithm overflows for curves with ⪆1000 control points.") - - # Generator for Bernstein polynomial functions - B(i, n) = t -> binomial(Int128(n), i) * t^i * (1 - t)^(n - i) - - # Derivative = N Σ_{i=0}^{N-1} sigma(i) - # P indices adjusted for Julia 1-based array indexing - sigma(i) = B(i, N - 1)(t) .* (P[(i + 1) + 1] - P[(i) + 1]) - derivative = N .* sum(sigma, 0:(N - 1)) - - return (derivative,) + return ntuple(n -> ∂ₙr(ts, n, T(diff_method.ε)), Dim) end ################################################################################ @@ -83,17 +108,25 @@ end ################################################################################ """ - differential(geometry, ts) + differential(geometry, ts[, diff_method]) Calculate the differential element (length, area, volume, etc) of the parametric -function for `geometry` at arguments `ts`. +function for `geometry` at arguments `ts`. Optionally, direct the use of a +particular differentiation method `diff_method`; by default use analytic solutions where +possible and finite difference approximations otherwise. + +# Arguments +- `geometry`: some `Meshes.Geometry` of N parametric dimensions +- `ts`: a parametric point specified as a vector or tuple of length N +- `diff_method`: the desired [`DifferentiationMethod`](@ref) to use """ function differential( - geometry::Geometry, - ts::V -) where {V <: Union{AbstractVector, Tuple}} + geometry::G, + ts::Union{AbstractVector{T}, Tuple{T, Vararg{T}}}, + diff_method::DifferentiationMethod = _default_method(G) +) where {G <: Geometry, T <: AbstractFloat} # Calculate the Jacobian, convert Vec -> KVector - J = jacobian(geometry, ts) + J = jacobian(geometry, ts, diff_method) J_kvecs = Iterators.map(_kvector, J) # Extract units from Geometry type diff --git a/src/integral.jl b/src/integral.jl index d4925db7..1a1c7878 100644 --- a/src/integral.jl +++ b/src/integral.jl @@ -3,7 +3,7 @@ ################################################################################ """ - integral(f, geometry[, rule]; FP=Float64) + integral(f, geometry[, rule]; diff_method=_default_method(geometry), FP=Float64) Numerically integrate a given function `f(::Point)` over the domain defined by a `geometry` using a particular numerical integration `rule` with floating point @@ -12,12 +12,13 @@ precision of type `FP`. # Arguments - `f`: an integrand function with a method `f(::Meshes.Point)` - `geometry`: some `Meshes.Geometry` that defines the integration domain -- `rule`: optionally, the `IntegrationRule` used for integration (by default `GaussKronrod()` in 1D and `HAdaptiveCubature()` else) -- `FP`: optionally, the floating point precision desired (`Float64` by default) +- `rule`: optionally, the `IntegrationRule` used for integration (by default +`GaussKronrod()` in 1D and `HAdaptiveCubature()` else) -Note that reducing `FP` below `Float64` will incur some loss of precision. By -contrast, increasing `FP` to e.g. `BigFloat` will typically increase precision -(at the expense of longer runtimes). +# Keyword Arguments +- `diff_method::DifferentiationMethod = _default_method(geometry)`: the method to +use for calculating Jacobians that are used to calculate differential elements +- `FP = Float64`: the floating point precision desired. """ function integral end @@ -59,8 +60,9 @@ function _integral( f, geometry, rule::GaussLegendre; - FP::Type{T} = Float64 -) where {T <: AbstractFloat} + FP::Type{T} = Float64, + diff_method::DM = _default_method(geometry) +) where {DM <: DifferentiationMethod, T <: AbstractFloat} N = Meshes.paramdim(geometry) # Get Gauss-Legendre nodes and weights for a region [-1,1]^N @@ -73,7 +75,7 @@ function _integral( function integrand((weights, nodes)) ts = t.(nodes) - prod(weights) * f(geometry(ts...)) * differential(geometry, ts) + prod(weights) * f(geometry(ts...)) * differential(geometry, ts, diff_method) end return FP(1 // (2^N)) .* sum(integrand, zip(weights, nodes)) @@ -84,11 +86,12 @@ function _integral( f, geometry, rule::HAdaptiveCubature; - FP::Type{T} = Float64 -) where {T <: AbstractFloat} + FP::Type{T} = Float64, + diff_method::DM = _default_method(geometry) +) where {DM <: DifferentiationMethod, T <: AbstractFloat} N = Meshes.paramdim(geometry) - integrand(ts) = f(geometry(ts...)) * differential(geometry, ts) + integrand(ts) = f(geometry(ts...)) * differential(geometry, ts, diff_method) # HCubature doesn't support functions that output Unitful Quantity types # Establish the units that are output by f @@ -111,9 +114,10 @@ function _integral_gk_1d( f, geometry, rule::GaussKronrod; - FP::Type{T} = Float64 -) where {T <: AbstractFloat} - integrand(t) = f(geometry(t)) * differential(geometry, (t,)) + FP::Type{T} = Float64, + diff_method::DM = _default_method(geometry) +) where {DM <: DifferentiationMethod, T <: AbstractFloat} + integrand(t) = f(geometry(t)) * differential(geometry, (t,), diff_method) return QuadGK.quadgk(integrand, zero(FP), one(FP); rule.kwargs...)[1] end @@ -121,9 +125,10 @@ function _integral_gk_2d( f, geometry2d, rule::GaussKronrod; - FP::Type{T} = Float64 -) where {T <: AbstractFloat} - integrand(u, v) = f(geometry2d(u, v)) * differential(geometry2d, (u, v)) + FP::Type{T} = Float64, + diff_method::DM = _default_method(geometry2d) +) where {DM <: DifferentiationMethod, T <: AbstractFloat} + integrand(u, v) = f(geometry2d(u, v)) * differential(geometry2d, (u, v), diff_method) ∫₁(v) = QuadGK.quadgk(u -> integrand(u, v), zero(FP), one(FP); rule.kwargs...)[1] return QuadGK.quadgk(v -> ∫₁(v), zero(FP), one(FP); rule.kwargs...)[1] end diff --git a/src/specializations/BezierCurve.jl b/src/specializations/BezierCurve.jl index c40b3366..fc5905b3 100644 --- a/src/specializations/BezierCurve.jl +++ b/src/specializations/BezierCurve.jl @@ -9,31 +9,43 @@ # keyword argument and pass through the specified algorithm choice. ################################################################################ +################################################################################ +# integral +################################################################################ """ integral(f, curve::BezierCurve, rule = GaussKronrod(); - FP=Float64, alg=Meshes.Horner()) - -Like [`integral`](@ref) but integrates along the domain defined a `curve`. By -default this uses Horner's method to improve performance when parameterizing -the `curve` at the expense of a small loss of precision. Additional accuracy -can be obtained by specifying the use of DeCasteljau's algorithm instead with -`alg=Meshes.DeCasteljau()` but can come at a steep cost in memory allocations, -especially for curves with a large number of control points. + diff_method=Analytical(), FP=Float64, alg=Meshes.Horner()) + +Like [`integral`](@ref) but integrates along the domain defined by `curve`. + +# Arguments +- `f`: an integrand function with a method `f(::Meshes.Point)` +- `curve`: a `Meshes.BezierCurve` that defines the integration domain +- `rule = GaussKronrod()`: optionally, the `IntegrationRule` used for integration + +# Keyword Arguments +- `diff_method::DifferentiationMethod = Analytical()`: the method to use for +calculating Jacobians that are used to calculate differential elements +- `FP = Float64`: the floating point precision desired +- `alg = Meshes.Horner()`: the method to use for parameterizing `curve`. Alternatively, +`alg=Meshes.DeCasteljau()` can be specified for increased accuracy, but comes with a +steep performance cost, especially for curves with a large number of control points. """ function integral( f::F, curve::Meshes.BezierCurve, rule::GaussLegendre; + diff_method::DM = _default_method(curve), FP::Type{T} = Float64, alg::Meshes.BezierEvalMethod = Meshes.Horner() -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} # Compute Gauss-Legendre nodes/weights for x in interval [-1,1] xs, ws = _gausslegendre(FP, rule.n) # Change of variables: x [-1,1] ↦ t [0,1] t(x) = FP(1 // 2) * x + FP(1 // 2) point(x) = curve(t(x), alg) - integrand(x) = f(point(x)) * differential(curve, (t(x),)) + integrand(x) = f(point(x)) * differential(curve, (t(x),), diff_method) # Integrate f along curve and apply domain-correction for [-1,1] ↦ [0, length] return FP(1 // 2) * sum(w .* integrand(x) for (w, x) in zip(ws, xs)) @@ -43,11 +55,12 @@ function integral( f::F, curve::Meshes.BezierCurve, rule::GaussKronrod; + diff_method::DM = _default_method(curve), FP::Type{T} = Float64, alg::Meshes.BezierEvalMethod = Meshes.Horner() -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} point(t) = curve(t, alg) - integrand(t) = f(point(t)) * differential(curve, (t,)) + integrand(t) = f(point(t)) * differential(curve, (t,), diff_method) return QuadGK.quadgk(integrand, zero(FP), one(FP); rule.kwargs...)[1] end @@ -55,11 +68,12 @@ function integral( f::F, curve::Meshes.BezierCurve, rule::HAdaptiveCubature; + diff_method::DM = _default_method(curve), FP::Type{T} = Float64, alg::Meshes.BezierEvalMethod = Meshes.Horner() -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} point(t) = curve(t, alg) - integrand(ts) = f(point(only(ts))) * differential(curve, ts) + integrand(ts) = f(point(only(ts))) * differential(curve, ts, diff_method) # HCubature doesn't support functions that output Unitful Quantity types # Establish the units that are output by f @@ -73,3 +87,40 @@ function integral( # Reapply units return value .* integrandunits end + +################################################################################ +# jacobian +################################################################################ + +function jacobian( + bz::Meshes.BezierCurve, + ts::V, + diff_method::Analytical +) where {V <: Union{AbstractVector, Tuple}} + t = only(ts) + # Parameter t restricted to domain [0,1] by definition + if t < 0 || t > 1 + throw(DomainError(t, "b(t) is not defined for t outside [0, 1].")) + end + + # Aliases + P = bz.controls + N = Meshes.degree(bz) + + # Ensure that this implementation is tractible: limited by ability to calculate + # binomial(N, N/2) without overflow. It's possible to extend this range by + # converting N to a BigInt, but this results in always returning BigFloat's. + N <= 1028 || error("This algorithm overflows for curves with ⪆1000 control points.") + + # Generator for Bernstein polynomial functions + B(i, n) = t -> binomial(Int128(n), i) * t^i * (1 - t)^(n - i) + + # Derivative = N Σ_{i=0}^{N-1} sigma(i) + # P indices adjusted for Julia 1-based array indexing + sigma(i) = B(i, N - 1)(t) .* (P[(i + 1) + 1] - P[(i) + 1]) + derivative = N .* sum(sigma, 0:(N - 1)) + + return (derivative,) +end + +_has_analytical(::Type{T}) where {T <: Meshes.BezierCurve} = true diff --git a/src/specializations/Line.jl b/src/specializations/Line.jl index fbb398c9..4d4c4c89 100644 --- a/src/specializations/Line.jl +++ b/src/specializations/Line.jl @@ -11,8 +11,11 @@ function integral( f::F, line::Meshes.Line, rule::GaussLegendre; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Line, diff_method) + # Compute Gauss-Legendre nodes/weights for x in interval [-1,1] xs, ws = _gausslegendre(FP, rule.n) @@ -24,8 +27,8 @@ function integral( t′(x) = (1 + x^2) / (1 - x^2)^2 # Integrate f along the Line - domainunits = _units(line(0)) - integrand(x) = f(line(t(x))) * t′(x) * domainunits + differential(line, x) = t′(x) * _units(line(0)) + integrand(x) = f(line(t(x))) * differential(line, x) return sum(w .* integrand(x) for (w, x) in zip(ws, xs)) end @@ -33,8 +36,11 @@ function integral( f::F, line::Meshes.Line, rule::GaussKronrod; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Line, diff_method) + # Normalize the Line s.t. line(t) is distance t from origin point line = Meshes.Line(line.a, line.a + Meshes.unormalize(line.b - line.a)) @@ -48,8 +54,11 @@ function integral( f::F, line::Meshes.Line, rule::HAdaptiveCubature; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Line, diff_method) + # Normalize the Line s.t. line(t) is distance t from origin point line = Meshes.Line(line.a, line.a + Meshes.unormalize(line.b - line.a)) @@ -58,8 +67,8 @@ function integral( t′(x) = (1 + x^2) / (1 - x^2)^2 # Integrate f along the Line - domainunits = _units(line(0)) - integrand(x::AbstractVector) = f(line(t(x[1]))) * t′(x[1]) * domainunits + differential(line, x) = t′(x) * _units(line(0)) + integrand(x::AbstractVector) = f(line(t(x[1]))) * differential(line, x[1]) # HCubature doesn't support functions that output Unitful Quantity types # Establish the units that are output by f @@ -68,8 +77,14 @@ function integral( # Create a wrapper that returns only the value component in those units uintegrand(uv) = Unitful.ustrip.(integrandunits, integrand(uv)) # Integrate only the unitless values - value = HCubature.hcubature(uintegrand, FP[-1], FP[1]; rule.kwargs...)[1] + value = HCubature.hcubature(uintegrand, (-one(FP),), (one(FP),); rule.kwargs...)[1] # Reapply units return value .* integrandunits end + +################################################################################ +# jacobian +################################################################################ + +_has_analytical(::Type{T}) where {T <: Meshes.Line} = true diff --git a/src/specializations/Plane.jl b/src/specializations/Plane.jl index 70243e8a..1b34405e 100644 --- a/src/specializations/Plane.jl +++ b/src/specializations/Plane.jl @@ -12,8 +12,11 @@ function integral( f::F, plane::Meshes.Plane, rule::GaussLegendre; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Plane, diff_method) + # Get Gauss-Legendre nodes and weights for a 2D region [-1,1]² xs, ws = _gausslegendre(FP, rule.n) wws = Iterators.product(ws, ws) @@ -40,8 +43,11 @@ function integral( f::F, plane::Meshes.Plane, rule::GaussKronrod; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Plane, diff_method) + # Normalize the Plane's orthogonal vectors uu = Meshes.unormalize(plane.u) uv = Meshes.unormalize(plane.v) @@ -58,8 +64,11 @@ function integral( f::F, plane::Meshes.Plane, rule::HAdaptiveCubature; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Plane, diff_method) + # Normalize the Plane's orthogonal vectors uu = Meshes.unormalize(plane.u) uv = Meshes.unormalize(plane.v) @@ -87,3 +96,9 @@ function integral( # Reapply units return value .* integrandunits end + +################################################################################ +# jacobian +################################################################################ + +_has_analytical(::Type{T}) where {T <: Meshes.Plane} = true diff --git a/src/specializations/Ray.jl b/src/specializations/Ray.jl index fce24530..9008b4a8 100644 --- a/src/specializations/Ray.jl +++ b/src/specializations/Ray.jl @@ -12,8 +12,11 @@ function integral( f::F, ray::Meshes.Ray, rule::GaussLegendre; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Ray, diff_method) + # Compute Gauss-Legendre nodes/weights for x in interval [-1,1] xs, ws = _gausslegendre(FP, rule.n) @@ -38,8 +41,11 @@ function integral( f::F, ray::Meshes.Ray, rule::GaussKronrod; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Ray, diff_method) + # Normalize the Ray s.t. ray(t) is distance t from origin point ray = Meshes.Ray(ray.p, Meshes.unormalize(ray.v)) @@ -53,8 +59,11 @@ function integral( f::F, ray::Meshes.Ray, rule::HAdaptiveCubature; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Ray, diff_method) + # Normalize the Ray s.t. ray(t) is distance t from origin point ray = Meshes.Ray(ray.p, Meshes.unormalize(ray.v)) @@ -78,3 +87,9 @@ function integral( # Reapply units return value .* integrandunits end + +################################################################################ +# jacobian +################################################################################ + +_has_analytical(::Type{T}) where {T <: Meshes.Ray} = true diff --git a/src/specializations/Ring.jl b/src/specializations/Ring.jl index 51cadf56..b2490ee2 100644 --- a/src/specializations/Ring.jl +++ b/src/specializations/Ring.jl @@ -8,6 +8,24 @@ # constituent Segment's, integrated separately, and then summed. ################################################################################ +""" + integral(f, ring::Ring, rule = GaussKronrod(); + diff_method=FiniteDifference(), FP=Float64) + +Like [`integral`](@ref) but integrates along the domain defined by `ring`. The +specified integration `rule` is applied independently to each segment formed by +consecutive points in the Ring. + +# Arguments +- `f`: an integrand function with a method `f(::Meshes.Point)` +- `ring`: a `Ring` that defines the integration domain +- `rule = GaussKronrod()`: optionally, the `IntegrationRule` used for integration + +# Keyword Arguments +- `diff_method::DifferentiationMethod = FiniteDifference()`: the method to use for +calculating Jacobians that are used to calculate differential elements +- `FP = Float64`: the floating point precision desired +""" function integral( f::F, ring::Meshes.Ring, diff --git a/src/specializations/Rope.jl b/src/specializations/Rope.jl index c68e82cc..7fcefa7f 100644 --- a/src/specializations/Rope.jl +++ b/src/specializations/Rope.jl @@ -8,6 +8,24 @@ # integrated separately, and then summed. ################################################################################ +""" + integral(f, rope::Rope, rule = GaussKronrod(); + diff_method=FiniteDifference(), FP=Float64) + +Like [`integral`](@ref) but integrates along the domain defined by `rope`. The +specified integration `rule` is applied independently to each segment formed by +consecutive points in the Rope. + +# Arguments +- `f`: an integrand function with a method `f(::Meshes.Point)` +- `rope`: a `Rope` that defines the integration domain +- `rule = GaussKronrod()`: optionally, the `IntegrationRule` used for integration + +# Keyword Arguments +- `diff_method::DifferentiationMethod = FiniteDifference()`: the method to use for +calculating Jacobians that are used to calculate differential elements +- `FP = Float64`: the floating point precision desired +""" function integral( f::F, rope::Meshes.Rope, diff --git a/src/specializations/Tetrahedron.jl b/src/specializations/Tetrahedron.jl index e4aac959..9fb2af9a 100644 --- a/src/specializations/Tetrahedron.jl +++ b/src/specializations/Tetrahedron.jl @@ -13,8 +13,9 @@ function integral( f::F, tetrahedron::Meshes.Tetrahedron, rule::GaussLegendre; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} _error_unsupported_combination("Tetrahedron", "GaussLegendre") end @@ -22,8 +23,11 @@ function integral( f::F, tetrahedron::Meshes.Tetrahedron, rule::GaussKronrod; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Tetrahedron, diff_method) + nil = zero(FP) ∫uvw(u, v, w) = f(tetrahedron(u, v, w)) ∫vw(v, w) = QuadGK.quadgk(u -> ∫uvw(u, v, w), nil, FP(1 - v - w); rule.kwargs...)[1] @@ -38,7 +42,14 @@ function integral( f::F, tetrahedron::Meshes.Tetrahedron, rule::HAdaptiveCubature; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} _error_unsupported_combination("Tetrahedron", "HAdaptiveCubature") end + +################################################################################ +# jacobian +################################################################################ + +_has_analytical(::Type{T}) where {T <: Meshes.Tetrahedron} = true diff --git a/src/specializations/Triangle.jl b/src/specializations/Triangle.jl index d0b418bb..c63e715b 100644 --- a/src/specializations/Triangle.jl +++ b/src/specializations/Triangle.jl @@ -9,20 +9,15 @@ # documentation. ################################################################################ -""" - integral(f, triangle::Triangle, ::GaussLegendre; FP=Float64) - -Like [`integral`](@ref) but integrates over the surface of a `triangle` -by transforming the triangle into a polar-barycentric coordinate system and -using a Gauss-Legendre quadrature rule along each barycentric dimension of the -triangle. -""" function integral( f::F, - triangle::Meshes.Ngon{3}, + triangle::Meshes.Triangle, rule::GaussLegendre; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Triangle, diff_method) + # Get Gauss-Legendre nodes and weights for a 2D region [-1,1]^2 xs, ws = _gausslegendre(FP, rule.n) wws = Iterators.product(ws, ws) @@ -53,18 +48,15 @@ function integral( return FP(π / 4) * Meshes.area(triangle) .* sum(integrand, zip(wws, xxs)) end -""" - integral(f, triangle::Triangle, ::GaussKronrod; FP=Float64) - -Like [`integral`](@ref) but integrates over the surface of a `triangle` using nested -Gauss-Kronrod quadrature rules along each barycentric dimension of the triangle. -""" function integral( f::F, - triangle::Meshes.Ngon{3}, + triangle::Meshes.Triangle, rule::GaussKronrod; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Triangle, diff_method) + # Integrate the Barycentric triangle in (u,v)-space: (0,0), (0,1), (1,0) # i.e. \int_{0}^{1} \int_{0}^{1-u} f(u,v) dv du ∫u(u) = QuadGK.quadgk(v -> f(triangle(u, v)), zero(FP), FP(1 - u); rule.kwargs...)[1] @@ -74,19 +66,15 @@ function integral( return 2 * Meshes.area(triangle) .* ∫ end -""" - integral(f, triangle::Triangle, ::GaussKronrod; FP=Float64) - -Like [`integral`](@ref) but integrates over the surface of a `triangle` by -transforming the triangle into a polar-barycentric coordinate system and using -an h-adaptive cubature rule. -""" function integral( f::F, - triangle::Meshes.Ngon{3}, + triangle::Meshes.Triangle, rule::HAdaptiveCubature; + diff_method::DM = Analytical(), FP::Type{T} = Float64 -) where {F <: Function, T <: AbstractFloat} +) where {F <: Function, DM <: DifferentiationMethod, T <: AbstractFloat} + _guarantee_analytical(Meshes.Triangle, diff_method) + # Integrate the Barycentric triangle by transforming it into polar coordinates # with a modified radius # R = r ( sinφ + cosφ ) @@ -104,3 +92,9 @@ function integral( # Apply a linear domain-correction factor 0.5 ↦ area(triangle) return 2 * Meshes.area(triangle) .* ∫ end + +################################################################################ +# jacobian +################################################################################ + +_has_analytical(::Type{T}) where {T <: Meshes.Triangle} = true diff --git a/src/utils.jl b/src/utils.jl index 14de6e6b..cafbfb67 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -14,6 +14,34 @@ function _error_unsupported_combination(geometry, rule) throw(ArgumentError(msg)) end +################################################################################ +# DifferentiationMethod +################################################################################ + +# Throw an ArgumentError if Analytical() jacobian not defined for this type +function _guarantee_analytical( + ::Type{G}, + ::DifferentiationMethod +) where {G <: Geometry} + throw(ArgumentError("$G geometries require kwarg diff_method = Analytical()")) +end + +_guarantee_analytical(::Type{G}, ::Analytical) where {G <: Geometry} = nothing + +# Return whether a geometry type has jacobian methods defined +_has_analytical(::Type{G}) where {G <: Geometry} = false +_has_analytical(g::G) where {G <: Geometry} = _has_analytical(G) + +# Return the default DifferentiationMethod instance for a particular geometry type +function _default_method( + g::Type{G} +) where {G <: Geometry} + return _has_analytical(G) ? Analytical() : FiniteDifference() +end + +# Return the default DifferentiationMethod instance for a particular geometry instance +_default_method(g::G) where {G <: Geometry} = _default_method(G) + ################################################################################ # CliffordNumbers and Units ################################################################################ diff --git a/test/utils.jl b/test/utils.jl index 45453a50..2a2d8a68 100644 --- a/test/utils.jl +++ b/test/utils.jl @@ -9,3 +9,35 @@ p = Point(1.0u"cm", 2.0u"mm", 3.0u"m") @test MeshIntegrals._units(p) == u"m" end + +@testitem "DifferentiationMethod" setup=[Setup] begin + using MeshIntegrals: _has_analytical, _default_method, _guarantee_analytical + + # _has_analytical of instances + bezier = BezierCurve([Point(t, sin(t), 0.0) for t in range(-π, π, length = 361)]) + @test _has_analytical(bezier) == true + sphere = Sphere(Point(0, 0, 0), 1.0) + @test _has_analytical(sphere) == false + + # _has_analytical of types + @test _has_analytical(Meshes.BezierCurve) == true + @test _has_analytical(Meshes.Line) == true + @test _has_analytical(Meshes.Plane) == true + @test _has_analytical(Meshes.Ray) == true + @test _has_analytical(Meshes.Sphere) == false + @test _has_analytical(Meshes.Tetrahedron) == true + @test _has_analytical(Meshes.Triangle) == true + + # _guarantee_analytical + @test _guarantee_analytical(Meshes.Line, Analytical()) === nothing + @test_throws "Analytical" _guarantee_analytical(Meshes.Line, FiniteDifference()) + + # _default_method + @test _default_method(Meshes.BezierCurve) isa Analytical + @test _default_method(bezier) isa Analytical + @test _default_method(Meshes.Sphere) isa FiniteDifference + @test _default_method(sphere) isa FiniteDifference + + # FiniteDifference + @test FiniteDifference().ε ≈ 1e-6 +end