diff --git a/docs/src/supportmatrix.md b/docs/src/supportmatrix.md index 7dc1b4ec..4265c06a 100644 --- a/docs/src/supportmatrix.md +++ b/docs/src/supportmatrix.md @@ -3,12 +3,12 @@ This library aims to enable users to calculate the value of integrals over all [**Meshes.jl**](https://github.com/JuliaGeometry/Meshes.jl) geometry types using an array of numerical integration rules and techniques. However, some combinations of geometry types and integration rules are ill-suited, and some others are simply -not yet yet implemented. The following Support Matrix captures the current state of support for +not yet implemented. The following Support Matrix captures the current state of support for all geometry/rule combinations. Entries with a green check mark are fully supported and pass unit tests designed to check for accuracy. In general, Gauss-Kronrod integration rules are recommended (and the default) for geometries -with one parametric dimension, e.g.: `Segment`, `BezierCurve`, and `Rope`. or geometries with +with one parametric dimension, e.g.: `Segment`, `BezierCurve`, and `Rope`. For geometries with more than one parametric dimension, e.g. surfaces and volumes, H-Adaptive Cubature rules are recommended (and the default). diff --git a/src/integral.jl b/src/integral.jl index e68030e4..f6647e48 100644 --- a/src/integral.jl +++ b/src/integral.jl @@ -45,7 +45,7 @@ function _integral( diff_method::DM = _default_method(geometry) ) where {DM <: DifferentiationMethod, T <: AbstractFloat} # Implementation depends on number of parametric dimensions over which to integrate - const N = Meshes.paramdim(geometry) + N = Meshes.paramdim(geometry) if N == 1 integrand(t) = f(geometry(t)) * differential(geometry, (t,), diff_method) return QuadGK.quadgk(integrand, zero(FP), one(FP); rule.kwargs...)[1] @@ -72,7 +72,7 @@ function _integral( FP::Type{T} = Float64, diff_method::DM = _default_method(geometry) ) where {DM <: DifferentiationMethod, T <: AbstractFloat} - const N = Meshes.paramdim(geometry) + N = Meshes.paramdim(geometry) # Get Gauss-Legendre nodes and weights for a region [-1,1]^N xs, ws = _gausslegendre(FP, rule.n) @@ -98,7 +98,7 @@ function _integral( FP::Type{T} = Float64, diff_method::DM = _default_method(geometry) ) where {DM <: DifferentiationMethod, T <: AbstractFloat} - const N = Meshes.paramdim(geometry) + N = Meshes.paramdim(geometry) integrand(ts) = f(geometry(ts...)) * differential(geometry, ts, diff_method)