Public API
Integrals
MeshIntegrals.integral
— Functionintegral(f, geometry)
+integral(f, geometry, algorithm)
+integral(f, geometry, algorithm, FP)
Numerically integrate a given function f(::Point)
over the domain defined by a geometry
using a particular integration algorithm
with floating point precision of type FP
.
Aliases
MeshIntegrals.lineintegral
— Functionlineintegral(f, geometry)
+lineintegral(f, geometry, algorithm)
+lineintegral(f, geometry, algorithm, FP)
Numerically integrate a given function f(::Point)
along a line-like geometry
using a particular integration algorithm
with floating point precision of type FP
.
Algorithm types available:
- GaussKronrod (default)
- GaussLegendre
- HAdaptiveCubature
MeshIntegrals.surfaceintegral
— Functionsurfaceintegral(f, geometry)
+surfaceintegral(f, geometry, algorithm)
+surfaceintegral(f, geometry, algorithm, FP)
Numerically integrate a given function f(::Point)
along a surface geometry
using a particular integration algorithm
with floating point precision of type FP
.
Algorithm types available:
- GaussKronrod
- GaussLegendre
- HAdaptiveCubature (default)
MeshIntegrals.volumeintegral
— Functionvolumeintegral(f, geometry)
+volumeintegral(f, geometry, algorithm)
+volumeintegral(f, geometry, algorithm, FP)
Numerically integrate a given function f(::Point)
throughout a volumetric geometry
using a particular integration algorithm
with floating point precision of type FP
.
Algorithm types available:
- GaussKronrod
- GaussLegendre
- HAdaptiveCubature (default)
Integration Algorithms
MeshIntegrals.GaussKronrod
— TypeGaussKronrod(kwargs...)
Numerically integrate using the h-adaptive Gauss-Kronrod quadrature rule implemented by QuadGK.jl. All standard QuadGK.quadgk
keyword arguments are supported.
MeshIntegrals.GaussLegendre
— TypeGaussLegendre(n)
Numerically integrate using an n
'th-order Gauss-Legendre quadrature rule. nodes and weights are efficiently calculated using FastGaussQuadrature.jl.
So long as the integrand function can be well-approximated by a polynomial of order 2n-1
, this method should yield results with 16-digit accuracy in O(n)
time. If the function is know to have some periodic content, then n
should (at a minimum) be greater than the expected number of periods over the geometry, e.g. length(geometry)/lambda
.
MeshIntegrals.HAdaptiveCubature
— TypeGaussKronrod(kwargs...)
Numerically integrate areas and surfaces using the h-adaptive cubature rule implemented by HCubature.jl. All standard HCubature.hcubature
keyword arguments are supported.