diff --git a/docs/src/triangle.md b/docs/src/triangle.md index a95943ab..34ce9e9c 100644 --- a/docs/src/triangle.md +++ b/docs/src/triangle.md @@ -1,69 +1,17 @@ -# Surface Integral Over a Triangle +# Integrating a Triangle -**Note: This explanation reflects my original method but is no longer valid. -An updated derivation is planned. ** - -A linear transformation can be applied that maps any triangle onto a Barycentric -coordinate system. A linear correction factor is then applied to correct for the -domain transformation, where the area of the original triangle is $A$ and the area -of the Barycentric triangle is $1/2$. -```math -\int_\triangle f(\bar{r}) \text{d}A - = \frac{A}{1/2} \int_0^1 \int_0^{1-v} f(u,v) \text{d}v \text{d}u -``` - -This Barycentric integral can be directly estimated using a nested application of -the h-adaptive Gauss-Kronrod quadrature rules from QuadGK.jl (`quadgk_surface`). -Alternatively, with some additional modification it can be transformed onto a -fixed rectangular domain for integration via cubature rules or other nested -quadrature rules. - -Let $g$ be a wrapper function for $f$ that is only non-zero at valid Barycentric -coordinates. +For a specified `Meshes.Triangle` surface with area $A$, let $u$ and $v$ be Barycentric coordinates that span the surface. ```math -g(u,v,) = - \begin{cases} - f(u,v) & \text{if } 0 \le u+v \le 1 \\ - 0 & \text{otherwise} - \end{cases} +\int_\triangle f(\bar{r}) \, \text{d}A + = \iint_\triangle f\left( \bar{r}(u,v) \right) \, \left( \text{d}u \wedge \text{d}v \right) ``` -Then +Since the geometric transformation from the originally-arbitrary domain to a Barycentric domain is linear, the magnitude of the surface element $\text{d}u \wedge \text{d}v$ is constant throughout the integration domain. This constant will be equal to twice the magnitude of $A$. ```math -\int_0^1 \int_0^{1-v} f(u,v) \text{d}v \text{d}u - = \int_0^1 \int_0^1 g(u,v) \text{d}v \text{d}u +\int_\triangle f(\bar{r}) \, \text{d}A + = 2A \int_0^1 \int_0^{1-v} f\left( \bar{r}(u,v) \right) \, \text{d}u \, \text{d}v ``` -A domain transformation can be applied to map the Barycentric coordinate domains -from $u,v \in [0,1]$ to $s,t \in [-1,1]$, enabling the application of Gauss-Legendre -quadrature rules. -```math -s(u) = 2u - 1 \\ -u(s) = \frac{s+1}{2} -\text{d}u = \frac{1}{2}\text{d}s -``` -```math -t(v) = 2v - 1 \\ -v(t) = \frac{t+1}{2} -\text{d}v = \frac{1}{2}\text{d}t -``` +This non-rectangular Barycentric domain prevents a direct application of most numerical integration methods. It can be directly integrated, albeit inefficiently, using nested Gauss-Kronrod quadrature rules. Alternatively, additional transformation could be applied to map this domain onto a rectangular domain. -Leading to -```math -\int_0^1 \int_0^1 g(u,v) \text{d}v \text{d}u - = \frac{1}{4} \int_{-1}^1 \int_{-1}^1 g(\frac{s+1}{2},\frac{t+1}{2}) \text{d}t \text{d}s -``` - -Gauss-Legendre nodes ($x \in [-1,1]$) and weights ($w$) for a rule of order $N$ -can be efficiently calculated using the FastGaussQuadrature.jl package. -```math -\int_{-1}^1 \int_{-1}^1 g(\frac{s+1}{2},\frac{t+1}{2}) \text{d}t \text{d}s - \approx \sum_{i=1}^N \sum_{j=1}_N w_i w_j f(x_i,x_j) -``` - -This approximation can be rolled back up the stack of equations, leading to an -expression that numerically approximates the original integral problem as -```math -\int_\triangle f(\bar{r}) \text{d}A - = \frac{A}{4(1/2)} \sum_{i=1}^N \sum_{j=1}_N w_i w_j f(\frac{x_i+1}{2}, \frac{x_j+1}{2}) -``` +**WORK IN PROGRESS:** continued derivation to detail this barycentric-rectangular domain transformation