From 443e7b6196c14972f864ba2bf94337c8c9f51ca0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Beno=C3=AEt=20Legat?= Date: Tue, 31 Oct 2023 20:48:00 +0100 Subject: [PATCH] Add docstrings --- ext/ManoptJuMPExt.jl | 37 +++++++++++++++++++++++++++++++++++++ test/MOI_wrapper.jl | 6 +++--- 2 files changed, 40 insertions(+), 3 deletions(-) diff --git a/ext/ManoptJuMPExt.jl b/ext/ManoptJuMPExt.jl index ed8e6dcf47..aa397a862d 100644 --- a/ext/ManoptJuMPExt.jl +++ b/ext/ManoptJuMPExt.jl @@ -132,6 +132,12 @@ function MOI.set(model::Optimizer, attr::MOI.RawOptimizerAttribute, value) return nothing end +""" + MOI.get(::Optimizer, ::MOI.SolverName) + +Return the name of the `Optimizer` with the value of +the `descent_state_type` option. +""" function MOI.get(model::Optimizer, ::MOI.SolverName) return "Manopt with $(model.options[DESCENT_STATE_TYPE])" end @@ -255,17 +261,40 @@ function MOI.set( return nothing end +""" + MOI.supports(::Optimizer, ::Union{MOI.ObjectiveSense,MOI.ObjectiveFunction}) + +Return `true` indicating that `Optimizer` supports being set the objective +sense (that is, min, max or feasibility) and the objective function. +""" function MOI.supports(::Optimizer, ::Union{MOI.ObjectiveSense,MOI.ObjectiveFunction}) return true end +""" + MOI.set(model::Optimizer, ::MOI.ObjectiveSense, sense::MOI.OptimizationSense) + +Modify the objective sense to either `MOI.MAX_SENSE`, `MOI.MIN_SENSE` or +`MOI.FEASIBILITY_SENSE`. +""" function MOI.set(model::Optimizer, ::MOI.ObjectiveSense, sense::MOI.OptimizationSense) model.sense = sense return nothing end +""" + MOI.set(model::Optimizer, ::MOI.ObjectiveSense, sense::MOI.OptimizationSense) + +Return the objective sense, defaults to `MOI.FEASIBILITY_SENSE` if no sense has +already been set. +""" MOI.get(model::Optimizer, ::MOI.ObjectiveSense) = model.sense +""" + MOI.set(model::Optimizer, ::MOI.ObjectiveFunction{F}, func::F) where {F} + +Set the objective function as `func` for `model`. +""" function MOI.set(model::Optimizer, ::MOI.ObjectiveFunction{F}, func::F) where {F} nl = convert(MOI.ScalarNonlinearFunction, func) MOI.Nonlinear.set_objective(model.nlp_model, nl) @@ -274,6 +303,14 @@ function MOI.set(model::Optimizer, ::MOI.ObjectiveFunction{F}, func::F) where {F return nothing end +""" + const DESCENT_STATE_TYPE = "descent_state_type" + +Name of the attribute for the type of the descent state to be used as follows: +```julia +set_attribute(model, "descent_state_type", Manopt.TrustRegionsState) +``` +""" const DESCENT_STATE_TYPE = "descent_state_type" function MOI.optimize!(model::Optimizer) diff --git a/test/MOI_wrapper.jl b/test/MOI_wrapper.jl index 34672354d4..dfd7eb6481 100644 --- a/test/MOI_wrapper.jl +++ b/test/MOI_wrapper.jl @@ -40,7 +40,7 @@ function test_sphere() set_objective_sense(model, MOI.FEASIBILITY_SENSE) optimize!(model) - @test sum(value.(x).^2) ≈ 1 + @test sum(value.(x) .^ 2) ≈ 1 set_start_value(x[3], nothing) err = ErrorException("No starting value specified for `3`th variable.") @@ -57,7 +57,7 @@ function _test_stiefel(solver) -1 1 ] # Use `add_bridges = false` in order to test `copy_to` - model = Model(Manopt.JuMP_Optimizer; add_bridges = false) + model = Model(Manopt.JuMP_Optimizer; add_bridges=false) set_attribute(model, "descent_state_type", solver) @test get_attribute(model, "descent_state_type") == solver @variable(model, U[1:2, 1:2] in Stiefel(2, 2), start = 1.0) @@ -70,7 +70,7 @@ function _test_stiefel(solver) end function test_stiefel() - _test_stiefel(Manopt.GradientDescentState) + return _test_stiefel(Manopt.GradientDescentState) end @testset "JuMP tests" begin