diff --git a/Project.toml b/Project.toml index 8e79b76..ca686c8 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "NonconvexMMA" uuid = "d3d89cbb-4ecd-4604-818d-8d1ff343e4da" authors = ["Mohamed Tarek and contributors"] -version = "0.1.5" +version = "1.0.0" [deps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" diff --git a/src/mma_algorithm.jl b/src/mma_algorithm.jl index 305d112..88dd955 100755 --- a/src/mma_algorithm.jl +++ b/src/mma_algorithm.jl @@ -41,8 +41,10 @@ A struct that stores all the options of the MMA algorithms. Th following are the - `s_decr`: defined in the original [`MMA02`](@ref) paper. - `store_trace`: if true, a trace will be stored. - `dual_options`: the options passed to the dual optimizer from [`Optim.jl`](https://github.com/JuliaNLSolvers/Optim.jl). + - `convcriteria`: an instance of [`ConvergenceCriteria`](@ref) that specifies the convergence criteria of the MMA algorithm. + - `verbose`: true/false, when true prints convergence statistics. """ -@with_kw mutable struct MMAOptions{T, Ttol <: Tolerance, TSubOptions <: Optim.Options} +@with_kw mutable struct MMAOptions{T, Ttol <: Tolerance, TSubOptions <: Optim.Options, TC <: ConvergenceCriteria} maxiter::Int = 1000 outer_maxiter::Int = 10^8 maxinner::Int = 10 @@ -60,6 +62,8 @@ A struct that stores all the options of the MMA algorithms. Th following are the iterations = 1000, outer_iterations=1000, ) + convcriteria::TC = KKTCriteria() + verbose::Bool = true end """ @@ -83,7 +87,6 @@ A struct that stores all the intermediate states and memory allocations needed f - `ρ`: the `ρ` parameter as explained in [`MMAApprox`](@ref). - `tempx`: a temporary vector used to store the 2nd previous primal solution. - `options`: an instance of [`MMAOptions`](@ref) that resembles the options of the MMA algorithm. - - `convcriteria`: an instance of [`ConvergenceCriteria`](@ref) that specifies the convergence criteria of the MMA algorithm. - `callback`: a function that is called on `solution` in every iteration of the algorithm. This can be used to store information about the optimization process. - `optimizer`: an instance of [`AbstractOptimizer`](@ref) such as `MMA87()` or `MMA02()` that specifies the variant of MMA used to optimize the model. - `suboptimizer`: the dual optimization algorithm used to optimize the barrier problem. This should be an [`Optim.jl`](https://github.com/JuliaNLSolvers/Optim.jl) optimizer. @@ -100,7 +103,6 @@ A struct that stores all the intermediate states and memory allocations needed f σ::AbstractVector ρ::AbstractVector tempx::AbstractVector - convcriteria::ConvergenceCriteria callback::Function optimizer::AbstractOptimizer options @@ -114,7 +116,6 @@ function MMAWorkspace( optimizer::AbstractOptimizer, x0::AbstractVector{T}; options = default_options(model, optimizer), - convcriteria::ConvergenceCriteria = KKTCriteria(), plot_trace::Bool = false, show_plot::Bool = plot_trace, save_plot = nothing, @@ -127,7 +128,7 @@ function MMAWorkspace( # Convergence λ = ones(getdim(getineqconstraints(model))) solution = Solution(dualmodel, λ) - assess_convergence!(solution, model, options.tol, convcriteria) + assess_convergence!(solution, model, options.tol, options.convcriteria, options.verbose, 0) correctsolution!(solution, model, options) # Trace @@ -147,7 +148,6 @@ function MMAWorkspace( σ, ρ, tempx, - convcriteria, callback, optimizer, options, @@ -183,11 +183,12 @@ function Workspace(model::VecModel, optimizer::Union{MMA87, MMA02}, args...; kwa end function optimize!(workspace::MMAWorkspace) - @unpack dualmodel, solution, convcriteria = workspace + @unpack dualmodel, solution = workspace @unpack callback, optimizer, options, trace = workspace @unpack x0, σ, ρ, outer_iter, iter, fcalls = workspace @unpack dualoptimizer = optimizer @unpack dual_options, maxiter, outer_maxiter, auto_scale = options + @unpack convcriteria, verbose = options @unpack prevx, x, g, λ = solution best_solution = deepcopy(solution) @@ -292,7 +293,7 @@ function optimize!(workspace::MMAWorkspace) updatefg!(solution, fg, ∇fg) # Check if the algorithm has converged - assess_convergence!(solution, model, options.tol, convcriteria) + assess_convergence!(solution, model, options.tol, convcriteria, verbose, iter) # Callback, e.g. a trace plotting callback callback(solution) diff --git a/test/mma.jl b/test/mma.jl index 0b57af9..305ca44 100755 --- a/test/mma.jl +++ b/test/mma.jl @@ -3,11 +3,6 @@ using NonconvexMMA, LinearAlgebra, Test, Zygote f(x::AbstractVector) = x[2] < 0 ? Inf : sqrt(x[2]) g(x::AbstractVector, a, b) = (a*x[1] + b)^3 - x[2] -options = MMAOptions( - tol = Tolerance(kkt = 1e-6, f = 0.0), - s_init = 0.1, -) - @testset "Simple constraints" begin m = Model(f) addvar!(m, [0.0, 0.0], [10.0, 10.0]) @@ -16,7 +11,12 @@ options = MMAOptions( @testset "MMA $(alg isa MMA87 ? "1987" : "2002")" for alg in (MMA87(), MMA02()) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end @@ -30,7 +30,12 @@ end @testset "MMA $(alg isa MMA87 ? "1987" : "2002")" for alg in (MMA87(), MMA02()) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end @@ -46,7 +51,12 @@ end @testset "MMA $(alg isa MMA87 ? "1987" : "2002")" for alg in (MMA87(), MMA02()) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end @@ -60,7 +70,12 @@ end @testset "MMA $(alg isa MMA87 ? "1987" : "2002")" for alg in (MMA87(), MMA02()) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end @@ -74,7 +89,12 @@ end @testset "MMA $(alg isa MMA87 ? "1987" : "2002")" for alg in (MMA87(), MMA02()) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, alg, [1.234, 2.345], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end @@ -92,7 +112,12 @@ end add_ineq_constraint!(m, x -> g(x, -1, 1)) for convcriteria in (KKTCriteria(), IpoptCriteria()) - r = NonconvexMMA.optimize(m, MMA02(), [0.4, 0.5], options = options, convcriteria = convcriteria) + options = MMAOptions(; + tol = Tolerance(kkt = 1e-6, f = 0.0), + s_init = 0.1, + convcriteria, + ) + r = NonconvexMMA.optimize(m, MMA02(), [0.4, 0.5], options = options) @test abs(r.minimum - sqrt(8/27)) < 1e-6 @test norm(r.minimizer - [1/3, 8/27]) < 1e-6 end