diff --git a/src/MultivariateStats.jl b/src/MultivariateStats.jl index 0528b12..13d33f6 100644 --- a/src/MultivariateStats.jl +++ b/src/MultivariateStats.jl @@ -1,16 +1,16 @@ module MultivariateStats - using DataFrames using LinearAlgebra using SparseArrays using Statistics: middle - using StatsAPI: RegressionModel + using Distributions: cdf, FDist + using StatsAPI: RegressionModel, HypothesisTest using StatsBase: SimpleCovariance, CovarianceEstimator, AbstractDataTransform, ConvergenceException, pairwise, pairwise!, CoefTable import Statistics: mean, var, cov, covm, cor import Base: length, size, show - import StatsAPI: fit, predict, coef, weights, dof, r2 + import StatsAPI: fit, predict, coef, weights, dof, r2, pvalue import LinearAlgebra: eigvals, eigvecs export @@ -67,7 +67,10 @@ module MultivariateStats KernelPCA, # Type: the Kernel PCA model ## cca - CCA, # Type: Correlation Component Analysis model + CCA, # Type: Correlation Component Analysis model + WilksLambdaTest, # Wilks lambda statistics and tests + PillaiTraceTest, # Pillai trace statistics and tests + LawleyHotellingTest, # Lawley-Hotelling statistics and tests ccacov, # CCA based on covariances ccasvd, # CCA based on singular value decomposition of input data @@ -107,17 +110,7 @@ module MultivariateStats FactorAnalysis, # Type: the Factor Analysis model faem, # EM algorithm for factor analysis - facm, # CM algorithm for factor analysis - - ## ca, mca - CA, # Type: correspondence analysis - - MCA, # Type: multiple correspondence analysis - object_coords, # return the object scores or coordinates from CA or MCA - variable_coords, # return the variable/category scores or coordinates from CA or MCA - inertia, # return the inertia (derived from eigenvalues) for CA - ca_stats, # fit statistics - quali_passive # handle qualitative passive variables + facm # CM algorithm for factor analysis ## source files include("types.jl") @@ -133,7 +126,6 @@ module MultivariateStats include("lda.jl") include("ica.jl") include("fa.jl") - include("mca.jl") ## deprecations @deprecate indim(f) size(f,1)