This repository has been archived by the owner on Jun 5, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 134
/
multi_video_reid.py
556 lines (470 loc) · 20.2 KB
/
multi_video_reid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
# coding=utf-8
# multi-camera reid
# given sync camera group (will use homography to check spatial)
# and consecutive camera group
# for reid, use hungarian algo.
import argparse
import cv2
import json
import os
import numpy as np
from tqdm import tqdm
from sklearn.metrics.pairwise import euclidean_distances
import lap # 0.4.0
#from scipy.optimize import linear_sum_assignment
from utils import parse_camera_file, compute_c1_to_c2_homography
from utils import parse_meva_clip_name
from utils import valid_box, warp_points
import torch
from torchreid.feature_extractor import FeatureExtractor
from torchreid.distance import compute_distance_matrix
from enqueuer_thread import VideoEnqueuer
from diva_io.video import VideoReader
from moviepy.editor import VideoFileClip
# outdoor cameras (10), ignoring "G300", "G301",
#camera_list = ["G505", "G506", "G638", "G424", "G339", "G328",
# "G341", "G436", "G336", "G340"]
# for G339, after 03-07.11-10, it enters patrol mode (03-07.16-50)
# only train set has G339
#exclude_list = {"G339": ("2018-03-07", "11-10-07")}
"""
"sync_groups": {
"2018-03-11.16-40-08.16-45-08": [
"2018-03-11.16-40-08.16-45-08.hospital.G341",
"2018-03-11.16-40-02.16-45-02.school.G424",
"2018-03-11.16-40-01.16-45-00.school.G328",
"2018-03-11.16-40-01.16-45-01.school.G336",
"2018-03-11.16-40-01.16-45-01.bus.G506",
..
],
...,
"consecutive_groups": [
[
"2018-03-11.16-40-08.16-45-08"
],
[
"2018-03-11.16-30-02.16-35-02",
"2018-03-11.16-35-01.16-40-01"
],
...
"""
parser = argparse.ArgumentParser()
parser.add_argument("filepath", help="mot track result path")
parser.add_argument("camera_group")
parser.add_argument("camera_model_path")
parser.add_argument("topdown_camera")
parser.add_argument("video_path")
parser.add_argument("newfilepath")
parser.add_argument("--gpuid", default=0, type=int,
help="gpu id")
parser.add_argument("--vehicle_reid_model", default=None)
parser.add_argument("--person_reid_model", default=None)
parser.add_argument("--use_lijun_video_loader", action="store_true")
parser.add_argument("--use_moviepy", action="store_true")
parser.add_argument("--max_size", type=int, default=1920)
parser.add_argument("--short_edge_size", type=int, default=1080)
parser.add_argument("--use_avg_pool", action="store_true",
help="use average pooling on each track's features")
parser.add_argument("--feature_box_num", default=100, type=int,
help="maximum box num to use for feature extraction, -1 "
"means all")
parser.add_argument("--feature_box_gap", default=20, type=int,
help="interval when getting boxes")
parser.add_argument("--spatial_dist_tol", default=50., type=float,
help="pixel distance tolerance")
camera_model = {
"G505": "2018-03-05.13-20-01.13-25-00.bus.G505.krtd",
"G506": "2018-03-05.13-15-00.13-20-00.bus.G506.krtd",
"G638": "2018-03-07.13-15-01.13-20-01.school.G638.krtd",
"G424": "2018-03-05.18-25-00.18-29-31.school.G424.krtd",
"G339": "2018-03-05.11-15-00.11-20-00.school.G339.krtd",
"G328": "2018-03-05.13-25-01.13-30-01.school.G328.krtd",
"G341": "2018-03-05.15-55-00.16-00-00.hospital.G341.krtd",
"G436": "2018-03-05.18-10-00.18-15-00.hospital.G436.krtd",
"G336": "2018-03-06.15-05-02.15-10-02.school.G336.krtd",
"G340": "2018-03-05.11-20-00.11-25-00.bus.G340.krtd"
}
def compute_homographys(topdown_camera, camera_path, camera_files):
hs = {}
c2_r, c2_t, c2_k = parse_camera_file(topdown_camera)
for camera in camera_files:
c1_r, c1_t, c1_k = parse_camera_file(
os.path.join(camera_path, camera_files[camera]))
homography = compute_c1_to_c2_homography(c1_r, c1_t, c1_k, c2_r, c2_t, c2_k)
hs[camera] = homography
return hs
def compute_frame_offset(v1, v2, fps):
date1, start_time1, end_time, location, camera = v1.split(".")
date2, start_time2, end_time, location, camera = v2.split(".")
assert date1 == date2
def time2sec(time_str):
# hour-minutes-seconds
hours, minutes, seconds = time_str.split("-")
return float(hours)*60.*60. + float(minutes)*60. + float(seconds)
time_offset = time2sec(start_time2) - time2sec(start_time1)
return time_offset * fps
def load_track_and_features(args, video_name, p_file, v_file, p_extractor,
v_extractor, hs):
date, hr_slot, camera = parse_meva_clip_name(video_name)
# start loading video_frames first
video_path = os.path.join(args.video_path, date, hr_slot, video_name + ".avi")
if args.use_lijun_video_loader:
vcap = VideoReader(video_path)
frame_count = int(vcap.length)
elif args.use_moviepy:
vcap = VideoFileClip(video_path, audio=False)
frame_count = int(vcap.fps * vcap.duration) # uh
vcap = vcap.iter_frames()
else:
try:
vcap = cv2.VideoCapture(video_path)
if not vcap.isOpened():
raise Exception("cannot open %s" % video_path)
except Exception as e:
raise Exception("warning, cannot open %s" % video_path)
# opencv 3/4
frame_count = vcap.get(cv2.CAP_PROP_FRAME_COUNT)
# start reading frames into queues now
video_queuer = VideoEnqueuer(
args, vcap, frame_count, frame_gap=1, # no skipping frames
prefetch=100,
start=True, is_moviepy=args.use_moviepy,
batch_size=1)
get_frame_batches = video_queuer.get()
def load_track_file(file_path, homography):
"""load a tracking file into dict of numpy arrays."""
# assuming sorted by frameid
data = []
with open(file_path, "r") as f:
for line in f:
frame_idx, track_id, left, top, width, height, conf, _, _, _ = line.strip().split(",")
data.append([frame_idx, track_id, left, top, width, height, conf])
if not data:
return {}
data = np.array(data, dtype="float32") # [N, 7]
# compute topdown points
foot_points_x = data[:, 2] + data[:, 4] / 2. # [N]
foot_points_y = data[:, 3] + data[:, 5]
foot_points = np.stack([foot_points_x, foot_points_y], axis=0) # [2, N]
# [2, N]
top_down_points = warp_points(foot_points, homography)
top_down_points = np.transpose(top_down_points, [1, 0]) # [N, 2]
# [N, 9]
data = np.concatenate([data, top_down_points], axis=1)
track_ids = np.unique(data[:, 1]).tolist()
track_data = {} # [num_track, K, 9]
for track_id in track_ids:
track_data[track_id] = data[data[:, 1] == track_id, :]
return track_data
# track_id -> data
p_tracks = load_track_file(p_file, hs[camera])
v_tracks = load_track_file(v_file, hs[camera])
# get each frame's boxes to extract
frame_data = {} # frame_idx -> a list of boxes,
def get_track_boxes(tracks, cat_name):
for track_id in tracks:
idxs = list(range(0, len(tracks[track_id]), args.feature_box_gap))
idxs = idxs[:args.feature_box_num]
boxes = tracks[track_id][idxs, :] # [k, 7]
for box_idx, box in enumerate(boxes):
frame_idx = box[0]
tlwh = box[2:6]
if not frame_idx in frame_data:
frame_data[frame_idx] = []
frame_data[frame_idx].append((tlwh, track_id, box_idx, cat_name))
get_track_boxes(p_tracks, "Person")
get_track_boxes(v_tracks, "Vehicle")
# 2. go through the video once and crop all the images to extract features
# assuming not conflict between person/vehicle track_id
p_track_to_feat = {} # "track_id" => features
v_track_to_feat = {} # "track_id" => features
for batch in tqdm(get_frame_batches, total=video_queuer.num_batches):
image, scale, frame_idx = batch[0]
image = image.astype("uint8") # need uint8 type
if frame_idx in frame_data:
for tlwh, track_id, box_idx, cat_name in frame_data[frame_idx]:
# check box valid
if valid_box(tlwh, image):
x, y, w, h = tlwh
x, y, w, h = int(x), int(y), int(w), int(h)
#print(x, y, w, h)
#print(image[y:y+h, x:x+w])
box_img = cv2.cvtColor(
image[y:y+h, x:x+w], cv2.COLOR_BGR2RGB)
if cat_name == "Person":
if track_id not in p_track_to_feat:
p_track_to_feat[track_id] = []
p_track_to_feat[track_id].append(box_img)
elif cat_name == "Vehicle":
if track_id not in v_track_to_feat:
v_track_to_feat[track_id] = []
v_track_to_feat[track_id].append(box_img)
# extract features
def get_features(track_to_imgs, extractor):
for track_id in track_to_imgs:
box_imgs = track_to_imgs[track_id]
track_to_imgs[track_id] = extractor(box_imgs).cpu().numpy() # [K, 512]
if args.use_avg_pool:
# [1, 512]
track_to_imgs[track_id] = np.mean(
track_to_imgs[track_id], axis=0, keepdims=True)
get_features(p_track_to_feat, p_extractor)
get_features(v_track_to_feat, v_extractor)
data = {}
def gather_data(track_data, track_features, cat_name):
data[cat_name] = {}
for track_id in track_data:
# ignore track with no valid boxes
if track_id in track_features:
data[cat_name][track_id] = (
track_data[track_id], track_features[track_id])
gather_data(p_tracks, p_track_to_feat, "Person")
gather_data(v_tracks, v_track_to_feat, "Vehicle")
return data
def compute_spatial_dist(tracks1, tracks2, frame_offset=0, tol=50, ignore_pairs=[[], []]):
# frameoffset: all frames in tracks2 add this
# tol: tolerance pixels
N = len(tracks1)
M = len(tracks2)
frame_offset = int(frame_offset)
spatial_dist = np.ones((N, M), dtype="float") * 9999.
for i, track_id1 in enumerate(sorted(tracks1.keys())):
track1 = tracks1[track_id1][0] # (K, 9)
frame_to_points1 = {int(p[0]): p[-2:] for p in track1}
frame_set1 = set([int(p[0]) for p in track1])
for j, track_id2 in enumerate(sorted(tracks2.keys())):
track2 = tracks2[track_id2][0]
frame_to_points2 = {(int(p[0]) + frame_offset): p[-2:] for p in track2}
frame_set2 = set([int(p[0]) + frame_offset for p in track2])
intersected_frame_ids = list(frame_set1 & frame_set2)
if intersected_frame_ids:
# [K, 2]
track1_points_to_compare = np.array(
[frame_to_points1[fid] for fid in intersected_frame_ids])
track2_points_to_compare = np.array(
[frame_to_points2[fid] for fid in intersected_frame_ids])
# pixel dist of the intersected frame part [K]
dist = np.linalg.norm(
track1_points_to_compare - track2_points_to_compare, axis=1)
# check how many are above the tolerance
# the tolerance should be taken into account the synchronize error,
# and the homography errors
#good = [1. if d <= tol else 0. for d in dist]
#spatial_dist[i, j] = np.sum(good)
mean_dist = np.mean(dist)
if mean_dist <= tol:
spatial_dist[i, j] = mean_dist
# TODO: the above does not consider intersected length
# reset the ignore pairs dist to large
for i, track_id1 in enumerate(sorted(tracks1.keys())):
for j, track_id2 in enumerate(sorted(tracks2.keys())):
if track_id1 in ignore_pairs[0] and track_id2 in ignore_pairs[1]:
spatial_dist[i, j] = 9999.
return spatial_dist
def compute_feature_dist(tracks1, tracks2, spatial_dist):
"""Compute squared l2 distance, save time on the sqrt op"""
N = len(tracks1)
M = len(tracks2)
feature_dist = np.ones((N, M), dtype="float") * 999
for i, track_id1 in enumerate(sorted(tracks1.keys())):
track1 = tracks1[track_id1][1] # features [K1, 512]
for j, track_id2 in enumerate(sorted(tracks2.keys())):
track2 = tracks2[track_id2][1] # features [K2, 512]
if spatial_dist[i, j] < 9999.:
# [K1, K2]
dist_mat = euclidean_distances(track1, track2, squared=True)
min_dist = dist_mat.min()
feature_dist[i, j] = min_dist
return feature_dist
def get_cur_links(tracks1, tracks2, video_name1, video_name2,
global_track_ids, cat_name):
# 1. get trackid pairs that already in the same global track
linked_pairs = [[], []]
for gid in global_track_ids[cat_name]:
track_id_set = global_track_ids[cat_name][gid]
for track_id1 in tracks1:
for track_id2 in tracks2:
key1 = (video_name1, track_id1)
key2 = (video_name2, track_id2)
if key1 in track_id_set and key2 in track_id_set:
linked_pairs[0].append(track_id1)
linked_pairs[1].append(track_id2)
# 2. get trackid pairs [at most NxM] that are in separate global tracks
# so we don't want to accidentally match them
track1_ids_in_global = []
track2_ids_in_global = []
for track_id in tracks1:
key = (video_name1, track_id)
for gid in global_track_ids[cat_name]:
track_id_set = global_track_ids[cat_name][gid]
if key in track_id_set:
track1_ids_in_global.append(track_id)
for track_id in tracks2:
key = (video_name2, track_id)
for gid in global_track_ids[cat_name]:
track_id_set = global_track_ids[cat_name][gid]
if key in track_id_set:
track2_ids_in_global.append(track_id)
return linked_pairs, (track1_ids_in_global, track2_ids_in_global)
def create_or_merge_global_id(global_track_ids, cat_name,
video_name1, track_id1,
video_name2, track_id2):
key1 = (video_name1, track_id1)
key2 = (video_name2, track_id2)
found = None
for gid in global_track_ids[cat_name]:
track_id_set = global_track_ids[cat_name][gid]
if key1 in track_id_set or key2 in track_id_set:
found = gid
break
if found is None:
# global track Id start from 1
new_gid = len(global_track_ids[cat_name]) + 1
global_track_ids[cat_name][new_gid] = set([key1, key2])
else:
global_track_ids[cat_name][found].add(key1)
global_track_ids[cat_name][found].add(key2)
def save_new_track(cat_name, track_data, global_track, out_dir, video_name):
# save the global track id in the x,y,z
track_results = sorted(
[b.tolist() for t in track_data for b in track_data[t][0]],
key=lambda x: (x[0], x[1]))
# make a reverse index first
local_to_global_track_ids = {tid: gid
for gid in global_track
for (vn, tid) in global_track[gid]
if vn == video_name}
out_file_dir = os.path.join(out_dir, video_name + ".avi", cat_name)
if not os.path.exists(out_file_dir):
os.makedirs(out_file_dir)
out_file = os.path.join(
out_file_dir, video_name + ".txt")
with open(out_file, "w") as fw:
for row in track_results:
# replace all local track_id with global track
local_track_id = row[1]
global_track_id = -1
if local_track_id in local_to_global_track_ids:
global_track_id = local_to_global_track_ids[local_track_id]
line = "%d,%d,%.2f,%.2f,%.2f,%.2f,%.4f,%d,-1,-1" % (
row[0], local_track_id, row[2], row[3], row[4], row[5], row[6],
global_track_id)
fw.write(line + "\n")
if __name__ == "__main__":
args = parser.parse_args()
np.set_printoptions(precision=2, suppress=True)
if not os.path.exists(args.newfilepath):
os.makedirs(args.newfilepath)
if args.person_reid_model is None or args.vehicle_reid_model is None:
raise Exception("Please provide models for person and vehicle!")
# assuming your GPU can fit both model at once
person_reid_extractor = FeatureExtractor(
model_name="osnet_x1_0",
model_path=args.person_reid_model,
image_size=(256, 128), # (h, w)
device="cuda:%d" % args.gpuid
)
vehicle_reid_extractor = FeatureExtractor(
model_name="resnet101",
model_path=args.vehicle_reid_model,
image_size=(128, 256),
device="cuda:%d" % args.gpuid
)
print("Model loaded.")
# compute homography first
# camera -> H
hs = compute_homographys(
args.topdown_camera, args.camera_model_path, camera_model)
with open(args.camera_group, "r") as f:
camera_data = json.load(f)
# reid among synchronized videos
print("reid in sync groups...")
for time_slot in tqdm(camera_data["sync_groups"]):
global_track_ids = {
"Person": {},
"Vehicle": {},
} # id -> a set of (video_name, track_id)
# 1. extract track data and features from each video
# video_name -> object -> track_id -> boxes [N, 9] and features [<M, 512]
tracks = {}
for video_name in camera_data["sync_groups"][time_slot]:
person_track_file = os.path.join(
args.filepath, video_name + ".avi", "Person", video_name + ".txt")
vehicle_track_file = os.path.join(
args.filepath, video_name + ".avi", "Vehicle", video_name + ".txt")
if not os.path.exists(person_track_file) or not os.path.exists(vehicle_track_file):
tqdm.write("skipping %s due to track not exists" % video_name)
continue
# compute the top-down coordinates as well
tracks[video_name] = load_track_and_features(
args, video_name, person_track_file, vehicle_track_file,
person_reid_extractor, vehicle_reid_extractor, hs)
video_names = sorted(tracks.keys())
for cat_name in ["Person", "Vehicle"]:
# bubble compare
for i in range(len(video_names) - 1):
# compare to all other video's tracks
for j in range(i + 1, len(video_names)):
tracks1 = tracks[video_names[i]][cat_name]
tracks2 = tracks[video_names[j]][cat_name]
# TODO: ignore short tracks?
# some pairs in tracks1 and tracks2 might already be linked in the
# global track in preivous a -> b, a -> c, so b -> c mapping
# check and remove the already linked tracks
linked_pairs, dont_match_pairs = get_cur_links(
tracks1, tracks2,
video_names[i], video_names[j],
global_track_ids, cat_name)
tracks1 = {tid: tracks1[tid]
for tid in tracks1 if tid not in linked_pairs[0]}
tracks2 = {tid: tracks2[tid]
for tid in tracks2 if tid not in linked_pairs[1]}
if not tracks1 or not tracks2:
continue
# theses time sync are only accurate within 1-2 seconds
frame_offset = compute_frame_offset(
video_names[i], video_names[j], 30.0)
# [N, M]
# the number of time-intersected trajectory that is within tol
spatial_dist = compute_spatial_dist(
tracks1, tracks2, frame_offset, tol=args.spatial_dist_tol,
ignore_pairs=dont_match_pairs)
#cost, x, y = lap.lapjv(spatial_dist, extend_cost=True, cost_limit=998.)
# ignoring large spatial dist items
feat_dist = compute_feature_dist(tracks1, tracks2, spatial_dist)
# minimize the total cost
cost, x, y = lap.lapjv(feat_dist, extend_cost=True, cost_limit=998.)
tracks1_ids = sorted(tracks1.keys())
tracks2_ids = sorted(tracks2.keys())
"""
print(video_names[i], video_names[j])
print(feat_dist)
print(x, y)
for ix, match_y in enumerate(x):
if match_y >= 0:
print("track 1 %s -> %s in track 2" % (
tracks1_ids[ix], tracks2_ids[match_y]))
sys.exit()
"""
for ix, match_y in enumerate(x):
if match_y >= 0:
matched_track1_id = tracks1_ids[ix]
matched_track2_id = tracks2_ids[match_y]
create_or_merge_global_id(
global_track_ids, cat_name,
video_names[i], matched_track1_id,
video_names[j], matched_track2_id)
for cat_name in ["Person", "Vehicle"]:
tqdm.write("group %s %s videos total %s %s track, %s got into %s global track" % (
time_slot, len(camera_data["sync_groups"][time_slot]),
sum([len(tracks[vn][cat_name]) for vn in tracks]), cat_name,
sum([len(global_track_ids[cat_name][gid]) for gid in global_track_ids[cat_name]]),
len(global_track_ids[cat_name])))
# save the results
for video_name in camera_data["sync_groups"][time_slot]:
for cat_name in ["Person", "Vehicle"]:
save_new_track(
cat_name, tracks[video_name][cat_name], global_track_ids[cat_name],
args.newfilepath, video_name)
print("Done reid in sync group.")
# TODO: multi-reid in consecutive camera groups