-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
55 lines (44 loc) · 1.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import time
import copy
import torch
from options.base_options import BaseOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
if __name__ == '__main__':
# training dataset
opt = BaseOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
opt.dataset_size = dataset_size
print('#training images = %d' % dataset_size)
# model
model = create_model(opt)
model.setup(opt)
visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
visualizer.reset()
epoch_iter = 0 # iterator within an epoch
epoch_loss = 0.0
for i, data in enumerate(dataset):
model.set_input(data)
model.optimize_parameters(epoch, epoch_iter)
total_steps += opt.batch_size
epoch_iter += opt.batch_size
epoch_loss += model.loss_G_total.detach().cpu()
epoch_loss /= dataset_size
model.update_learning_rate()
losses = {"EpochLoss": epoch_loss}
visualizer.plot_current_losses(epoch, 0.0, opt, losses)
visualizer.display_current_results(model.get_current_visuals(), epoch, False, 1.0, 256)
#if epoch % opt.save_epoch_freq == 0:
# model.WriteTextureToFile(opt.results_dir + 'texture_'+str(epoch)+'.png')
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save_networks('latest')
model.save_networks(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))