forked from jyp0802/Silent-Impact
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
164 lines (133 loc) · 5.54 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.size(0), -1)
class Mish(nn.Module):
def forward(self, x):
return x * torch.tanh(F.softplus(x))
class ClassificationModel(nn.Module):
def __init__(self, input_channels, num_classes, seq_len):
super(ClassificationModel, self).__init__()
self.att_1 = nn.Sequential(
nn.Conv1d(input_channels, 1, kernel_size=11, padding=5),
nn.Sigmoid()
)
self.att_2 = nn.Sequential(
nn.Conv1d(input_channels, 1, kernel_size=11, padding=5),
nn.Sigmoid()
)
self.att_3 = nn.Sequential(
nn.Conv1d(input_channels, 1, kernel_size=11, padding=5),
nn.Sigmoid()
)
self.att_classifier_1 = nn.Sequential(
nn.Conv1d(1, 16, kernel_size=11, padding=5),
nn.ReLU(),
Flatten(),
nn.Linear(seq_len * 16, num_classes),
nn.Softmax(dim=1)
)
self.att_classifier_2 = nn.Sequential(
nn.Conv1d(1, 16, kernel_size=11, padding=5),
nn.ReLU(),
Flatten(),
nn.Linear(seq_len * 16, num_classes),
nn.Softmax(dim=1)
)
self.att_classifier_3 = nn.Sequential(
nn.Conv1d(1, 16, kernel_size=11, padding=5),
nn.ReLU(),
Flatten(),
nn.Linear(seq_len * 16, num_classes),
nn.Softmax(dim=1)
)
# First convolution block
self.conv1_0 = nn.Conv1d(input_channels, 32, kernel_size=7, padding=3)
self.conv1_1 = nn.Conv1d(32, 32, kernel_size=7, padding=3)
self.conv1_2 = nn.Conv1d(32, 32, kernel_size=7, padding=3)
self.conv1_3 = nn.Conv1d(32, 32, kernel_size=7, padding=3)
self.bn1_0 = nn.BatchNorm1d(32)
self.bn1_1 = nn.BatchNorm1d(32)
self.bn1_2 = nn.BatchNorm1d(32)
self.bn1_3 = nn.BatchNorm1d(32)
self.mish1 = Mish()
# Second convolution block
self.conv2 = nn.Conv1d(128, 256, kernel_size=5, padding=2)
self.bn2 = nn.BatchNorm1d(256)
self.mish2 = Mish()
# Third convolution block
self.conv3 = nn.Conv1d(256, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm1d(128)
self.mish3 = Mish()
# Global Average Pooling (GAP) layer
self.gap = nn.AdaptiveAvgPool1d(1)
# Fully connected layer for classification
self.fc = nn.Linear(128, num_classes)
self.softmax = nn.Softmax(dim=1)
def forward(self, x, xfft):
# torch.Size([1, 112262, 6]) torch.Size([1, 3, 112262, 6])
x = x.transpose(1, 2)
xfft = xfft.transpose(2, 3)
a1 = self.att_1(xfft[:, 0])
a2 = self.att_2(xfft[:, 1])
a3 = self.att_3(xfft[:, 2])
x0_hid = self.conv1_0(x)
x0 = self.mish1(self.bn1_0(x0_hid))
x1_hid = self.conv1_1(x0 * a1)
x1 = self.mish1(self.bn1_1(x1_hid))
x2_hid = self.conv1_2(x1 * a2)
x2 = self.mish1(self.bn1_2(x2_hid))
x3_hid = self.conv1_3(x2 * a3)
x3 = self.mish1(self.bn1_3(x3_hid))
x = torch.cat((x0, x1, x2, x3), dim=1)
x = self.mish2(self.bn2(self.conv2(x)))
x = self.mish3(self.bn3(self.conv3(x)))
x = self.gap(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
out = self.softmax(x)
att_out_1 = self.att_classifier_1(a1)
att_out_2 = self.att_classifier_2(a2)
att_out_3 = self.att_classifier_3(a3)
outputs = torch.stack([att_out_1, att_out_2, att_out_3, out], dim=0)
return outputs
class DetectionModel(nn.Module):
def __init__(self, num_stages, num_layers, num_f_maps, dim, num_classes):
super(DetectionModel, self).__init__()
self.stage1 = SingleStageModel(num_layers, num_f_maps, dim, num_classes)
self.stages = nn.ModuleList([copy.deepcopy(SingleStageModel(num_layers, num_f_maps, num_classes, num_classes)) for s in range(num_stages-1)])
def forward(self, x):
x = x.transpose(1, 2)
out = self.stage1(x)
outputs = out.unsqueeze(0)
for s in self.stages:
out = s(F.softmax(out, dim=1))
outputs = torch.cat((outputs, out.unsqueeze(0)), dim=0)
outputs = outputs.transpose(2, 3)
return outputs
class SingleStageModel(nn.Module):
def __init__(self, num_layers, num_f_maps, dim, num_classes, kernel_size=3):
super(SingleStageModel, self).__init__()
self.conv_1x1 = nn.Conv1d(dim, num_f_maps, 1)
self.layers = nn.ModuleList([copy.deepcopy(DilatedResidualLayer(2 ** i, num_f_maps, num_f_maps, kernel_size)) for i in range(num_layers)])
self.conv_out = nn.Conv1d(num_f_maps, num_classes, 1)
def forward(self, x):
out = self.conv_1x1(x)
for layer in self.layers:
out = layer(out)
out = self.conv_out(out)
return out
class DilatedResidualLayer(nn.Module):
def __init__(self, dilation, in_channels, out_channels, kernel_size=3):
super(DilatedResidualLayer, self).__init__()
self.conv_dilated = nn.Conv1d(in_channels, out_channels, kernel_size, padding=dilation*(kernel_size//2), dilation=dilation)
self.conv_1x1 = nn.Conv1d(out_channels, out_channels, 1)
self.dropout = nn.Dropout()
def forward(self, x):
out = F.relu(self.conv_dilated(x))
out = self.conv_1x1(out)
out = self.dropout(out)
return (x + out)