-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
engine.py
478 lines (412 loc) · 17 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from __future__ import division, print_function, absolute_import
import time
import numpy as np
import os.path as osp
import datetime
from collections import OrderedDict
import torch
from torch.nn import functional as F
from torch.utils.tensorboard import SummaryWriter
from torchreid import metrics
from torchreid.utils import (
MetricMeter, AverageMeter, re_ranking, open_all_layers, save_checkpoint,
open_specified_layers, visualize_ranked_results
)
from torchreid.losses import DeepSupervision
class Engine(object):
r"""A generic base Engine class for both image- and video-reid.
Args:
datamanager (DataManager): an instance of ``torchreid.data.ImageDataManager``
or ``torchreid.data.VideoDataManager``.
use_gpu (bool, optional): use gpu. Default is True.
"""
def __init__(self, datamanager, use_gpu=True):
self.datamanager = datamanager
self.train_loader = self.datamanager.train_loader
self.test_loader = self.datamanager.test_loader
self.use_gpu = (torch.cuda.is_available() and use_gpu)
self.writer = None
self.epoch = 0
self.model = None
self.optimizer = None
self.scheduler = None
self._models = OrderedDict()
self._optims = OrderedDict()
self._scheds = OrderedDict()
def register_model(self, name='model', model=None, optim=None, sched=None):
if self.__dict__.get('_models') is None:
raise AttributeError(
'Cannot assign model before super().__init__() call'
)
if self.__dict__.get('_optims') is None:
raise AttributeError(
'Cannot assign optim before super().__init__() call'
)
if self.__dict__.get('_scheds') is None:
raise AttributeError(
'Cannot assign sched before super().__init__() call'
)
self._models[name] = model
self._optims[name] = optim
self._scheds[name] = sched
def get_model_names(self, names=None):
names_real = list(self._models.keys())
if names is not None:
if not isinstance(names, list):
names = [names]
for name in names:
assert name in names_real
return names
else:
return names_real
def save_model(self, epoch, rank1, save_dir, is_best=False):
names = self.get_model_names()
for name in names:
save_checkpoint(
{
'state_dict': self._models[name].state_dict(),
'epoch': epoch + 1,
'rank1': rank1,
'optimizer': self._optims[name].state_dict(),
'scheduler': self._scheds[name].state_dict()
},
osp.join(save_dir, name),
is_best=is_best
)
def set_model_mode(self, mode='train', names=None):
assert mode in ['train', 'eval', 'test']
names = self.get_model_names(names)
for name in names:
if mode == 'train':
self._models[name].train()
else:
self._models[name].eval()
def get_current_lr(self, names=None):
names = self.get_model_names(names)
name = names[0]
return self._optims[name].param_groups[-1]['lr']
def update_lr(self, names=None):
names = self.get_model_names(names)
for name in names:
if self._scheds[name] is not None:
self._scheds[name].step()
def run(
self,
save_dir='log',
max_epoch=0,
start_epoch=0,
print_freq=10,
fixbase_epoch=0,
open_layers=None,
start_eval=0,
eval_freq=-1,
test_only=False,
dist_metric='euclidean',
normalize_feature=False,
visrank=False,
visrank_topk=10,
use_metric_cuhk03=False,
ranks=[1, 5, 10, 20],
rerank=False
):
r"""A unified pipeline for training and evaluating a model.
Args:
save_dir (str): directory to save model.
max_epoch (int): maximum epoch.
start_epoch (int, optional): starting epoch. Default is 0.
print_freq (int, optional): print_frequency. Default is 10.
fixbase_epoch (int, optional): number of epochs to train ``open_layers`` (new layers)
while keeping base layers frozen. Default is 0. ``fixbase_epoch`` is counted
in ``max_epoch``.
open_layers (str or list, optional): layers (attribute names) open for training.
start_eval (int, optional): from which epoch to start evaluation. Default is 0.
eval_freq (int, optional): evaluation frequency. Default is -1 (meaning evaluation
is only performed at the end of training).
test_only (bool, optional): if True, only runs evaluation on test datasets.
Default is False.
dist_metric (str, optional): distance metric used to compute distance matrix
between query and gallery. Default is "euclidean".
normalize_feature (bool, optional): performs L2 normalization on feature vectors before
computing feature distance. Default is False.
visrank (bool, optional): visualizes ranked results. Default is False. It is recommended to
enable ``visrank`` when ``test_only`` is True. The ranked images will be saved to
"save_dir/visrank_dataset", e.g. "save_dir/visrank_market1501".
visrank_topk (int, optional): top-k ranked images to be visualized. Default is 10.
use_metric_cuhk03 (bool, optional): use single-gallery-shot setting for cuhk03.
Default is False. This should be enabled when using cuhk03 classic split.
ranks (list, optional): cmc ranks to be computed. Default is [1, 5, 10, 20].
rerank (bool, optional): uses person re-ranking (by Zhong et al. CVPR'17).
Default is False. This is only enabled when test_only=True.
"""
if visrank and not test_only:
raise ValueError(
'visrank can be set to True only if test_only=True'
)
if test_only:
self.test(
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks,
rerank=rerank
)
return
if self.writer is None:
self.writer = SummaryWriter(log_dir=save_dir)
time_start = time.time()
self.start_epoch = start_epoch
self.max_epoch = max_epoch
print('=> Start training')
for self.epoch in range(self.start_epoch, self.max_epoch):
self.train(
print_freq=print_freq,
fixbase_epoch=fixbase_epoch,
open_layers=open_layers
)
if (self.epoch + 1) >= start_eval \
and eval_freq > 0 \
and (self.epoch+1) % eval_freq == 0 \
and (self.epoch + 1) != self.max_epoch:
rank1 = self.test(
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks
)
self.save_model(self.epoch, rank1, save_dir)
if self.max_epoch > 0:
print('=> Final test')
rank1 = self.test(
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks
)
self.save_model(self.epoch, rank1, save_dir)
elapsed = round(time.time() - time_start)
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed {}'.format(elapsed))
if self.writer is not None:
self.writer.close()
def train(self, print_freq=10, fixbase_epoch=0, open_layers=None):
losses = MetricMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
self.set_model_mode('train')
self.two_stepped_transfer_learning(
self.epoch, fixbase_epoch, open_layers
)
self.num_batches = len(self.train_loader)
end = time.time()
for self.batch_idx, data in enumerate(self.train_loader):
data_time.update(time.time() - end)
loss_summary = self.forward_backward(data)
batch_time.update(time.time() - end)
losses.update(loss_summary)
if (self.batch_idx + 1) % print_freq == 0:
nb_this_epoch = self.num_batches - (self.batch_idx + 1)
nb_future_epochs = (
self.max_epoch - (self.epoch + 1)
) * self.num_batches
eta_seconds = batch_time.avg * (nb_this_epoch+nb_future_epochs)
eta_str = str(datetime.timedelta(seconds=int(eta_seconds)))
print(
'epoch: [{0}/{1}][{2}/{3}]\t'
'time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'eta {eta}\t'
'{losses}\t'
'lr {lr:.6f}'.format(
self.epoch + 1,
self.max_epoch,
self.batch_idx + 1,
self.num_batches,
batch_time=batch_time,
data_time=data_time,
eta=eta_str,
losses=losses,
lr=self.get_current_lr()
)
)
if self.writer is not None:
n_iter = self.epoch * self.num_batches + self.batch_idx
self.writer.add_scalar('Train/time', batch_time.avg, n_iter)
self.writer.add_scalar('Train/data', data_time.avg, n_iter)
for name, meter in losses.meters.items():
self.writer.add_scalar('Train/' + name, meter.avg, n_iter)
self.writer.add_scalar(
'Train/lr', self.get_current_lr(), n_iter
)
end = time.time()
self.update_lr()
def forward_backward(self, data):
raise NotImplementedError
def test(
self,
dist_metric='euclidean',
normalize_feature=False,
visrank=False,
visrank_topk=10,
save_dir='',
use_metric_cuhk03=False,
ranks=[1, 5, 10, 20],
rerank=False
):
r"""Tests model on target datasets.
.. note::
This function has been called in ``run()``.
.. note::
The test pipeline implemented in this function suits both image- and
video-reid. In general, a subclass of Engine only needs to re-implement
``extract_features()`` and ``parse_data_for_eval()`` (most of the time),
but not a must. Please refer to the source code for more details.
"""
self.set_model_mode('eval')
targets = list(self.test_loader.keys())
for name in targets:
domain = 'source' if name in self.datamanager.sources else 'target'
print('##### Evaluating {} ({}) #####'.format(name, domain))
query_loader = self.test_loader[name]['query']
gallery_loader = self.test_loader[name]['gallery']
rank1, mAP = self._evaluate(
dataset_name=name,
query_loader=query_loader,
gallery_loader=gallery_loader,
dist_metric=dist_metric,
normalize_feature=normalize_feature,
visrank=visrank,
visrank_topk=visrank_topk,
save_dir=save_dir,
use_metric_cuhk03=use_metric_cuhk03,
ranks=ranks,
rerank=rerank
)
if self.writer is not None:
self.writer.add_scalar(f'Test/{name}/rank1', rank1, self.epoch)
self.writer.add_scalar(f'Test/{name}/mAP', mAP, self.epoch)
return rank1
@torch.no_grad()
def _evaluate(
self,
dataset_name='',
query_loader=None,
gallery_loader=None,
dist_metric='euclidean',
normalize_feature=False,
visrank=False,
visrank_topk=10,
save_dir='',
use_metric_cuhk03=False,
ranks=[1, 5, 10, 20],
rerank=False
):
batch_time = AverageMeter()
def _feature_extraction(data_loader):
f_, pids_, camids_ = [], [], []
for batch_idx, data in enumerate(data_loader):
imgs, pids, camids = self.parse_data_for_eval(data)
if self.use_gpu:
imgs = imgs.cuda()
end = time.time()
features = self.extract_features(imgs)
batch_time.update(time.time() - end)
features = features.cpu()
f_.append(features)
pids_.extend(pids.tolist())
camids_.extend(camids.tolist())
f_ = torch.cat(f_, 0)
pids_ = np.asarray(pids_)
camids_ = np.asarray(camids_)
return f_, pids_, camids_
print('Extracting features from query set ...')
qf, q_pids, q_camids = _feature_extraction(query_loader)
print('Done, obtained {}-by-{} matrix'.format(qf.size(0), qf.size(1)))
print('Extracting features from gallery set ...')
gf, g_pids, g_camids = _feature_extraction(gallery_loader)
print('Done, obtained {}-by-{} matrix'.format(gf.size(0), gf.size(1)))
print('Speed: {:.4f} sec/batch'.format(batch_time.avg))
if normalize_feature:
print('Normalzing features with L2 norm ...')
qf = F.normalize(qf, p=2, dim=1)
gf = F.normalize(gf, p=2, dim=1)
print(
'Computing distance matrix with metric={} ...'.format(dist_metric)
)
distmat = metrics.compute_distance_matrix(qf, gf, dist_metric)
distmat = distmat.numpy()
if rerank:
print('Applying person re-ranking ...')
distmat_qq = metrics.compute_distance_matrix(qf, qf, dist_metric)
distmat_gg = metrics.compute_distance_matrix(gf, gf, dist_metric)
distmat = re_ranking(distmat, distmat_qq, distmat_gg)
print('Computing CMC and mAP ...')
cmc, mAP = metrics.evaluate_rank(
distmat,
q_pids,
g_pids,
q_camids,
g_camids,
use_metric_cuhk03=use_metric_cuhk03
)
print('** Results **')
print('mAP: {:.1%}'.format(mAP))
print('CMC curve')
for r in ranks:
print('Rank-{:<3}: {:.1%}'.format(r, cmc[r - 1]))
if visrank:
visualize_ranked_results(
distmat,
self.datamanager.fetch_test_loaders(dataset_name),
self.datamanager.data_type,
width=self.datamanager.width,
height=self.datamanager.height,
save_dir=osp.join(save_dir, 'visrank_' + dataset_name),
topk=visrank_topk
)
return cmc[0], mAP
def compute_loss(self, criterion, outputs, targets):
if isinstance(outputs, (tuple, list)):
loss = DeepSupervision(criterion, outputs, targets)
else:
loss = criterion(outputs, targets)
return loss
def extract_features(self, input):
return self.model(input)
def parse_data_for_train(self, data):
imgs = data['img']
pids = data['pid']
return imgs, pids
def parse_data_for_eval(self, data):
imgs = data['img']
pids = data['pid']
camids = data['camid']
return imgs, pids, camids
def two_stepped_transfer_learning(
self, epoch, fixbase_epoch, open_layers, model=None
):
"""Two-stepped transfer learning.
The idea is to freeze base layers for a certain number of epochs
and then open all layers for training.
Reference: https://arxiv.org/abs/1611.05244
"""
model = self.model if model is None else model
if model is None:
return
if (epoch + 1) <= fixbase_epoch and open_layers is not None:
print(
'* Only train {} (epoch: {}/{})'.format(
open_layers, epoch + 1, fixbase_epoch
)
)
open_specified_layers(model, open_layers)
else:
open_all_layers(model)