-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
98 lines (79 loc) · 3.02 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import torch
import torch.nn as nn
import torch.nn.functional as F
class LabelSmoothingLoss(nn.Module):
def __init__(self, classes, smoothing=0.0, dim=-1):
super(LabelSmoothingLoss, self).__init__()
self.confidence = 1.0 - smoothing #0.9
self.smoothing = smoothing #0.1
self.cls = classes #54
self.dim = dim
self.true_dist = None
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def forward(self, pred, target):
pred = pred.log_softmax(dim=self.dim) #对输出进行softmax
# print('pred.shape', pred.shape)
with torch.no_grad():
# true_dist = pred.data.clone()
true_dist = torch.zeros_like(pred) #0列表
true_dist.fill_(self.smoothing / (self.cls - 1))
true_dist.scatter_(1, target.unsqueeze(1).cuda(), self.confidence)
# true_dist.cpu().scatter_(1, target.unsqueeze(1).cpu(), self.confidence)
self.true_dist = true_dist
return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
#举例:update(loss,batch_size), val为loss为一个batch损失的均值, sum统计一个batch整体损失, count记录样本数量, avg记录总的损失均值
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, label):
_,pred = output.topk(1,1)
batch_size = len(pred)
pred = pred.view(-1,batch_size).squeeze()
compare = pred.eq(label)
correct = compare.sum()*1.0
res = []
res.append(correct*100.0/batch_size)
return res
def train(data_loader, model, criterion, optimizer, epoch, accumulation_steps):
losses = AverageMeter()
# top = AverageMeter()
model.train()
optimizer.zero_grad()
epoch_loss = 0
num = 0
# 进来一个batch的数据,计算一次梯度,更新一次网络
for i, (img, target) in enumerate(data_loader):
img = img.cuda()
target = target.cuda()
batch_size = target.shape[0]
# vec, s, output = model(img)
vec, output = model(img)
loss = criterion(output, target)
# print(output)
# print(target)
acc = accuracy(output, target)
epoch_loss += loss
losses.update(loss.item(), batch_size)
loss.backward()
num += 1
if((i+1)%accumulation_steps == 0):
optimizer.step()
optimizer.zero_grad()
if(i%10==0):
print('Alzhehimer - 3DCNN <==> Train Epoch: [{0}][{1}/{2}] Acc: {3}\n'
'Loss {loss.val:.4f} ({loss.avg:.4f})\n'.format(epoch, i, len(data_loader), acc[0], loss=losses))
if(num % accumulation_steps):
optimizer.step()
optimizer.zero_grad()
return epoch_loss