-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
123 lines (104 loc) · 4.63 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python3
"""Variational Autoencoder models.
Available latent distributions:
* Gaussian/ Normal [1]
* RelaxedBernoulli/ BinConcrete [2]
[1] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes."
[2] Maddison, Chris J., Andriy Mnih, and Yee Whye Teh. "The concrete
distribution: A continuous relaxation of discrete random variables."
Author, Karen Ullrich June 2019
"""
import tensorflow as tf
import tensorflow_probability as tfp
tfd = tfp.distributions
class VAE(tf.keras.Model):
def __init__(self, latent_dim):
super(VAE, self).__init__()
self.latent_dim = latent_dim
# This is heavily inspired by an official VAE tutorial,
# https://www.tensorflow.org/beta/tutorials/generative/cvae
self.inference_net = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(28, 28, 1)),
tf.keras.layers.Conv2D(
filters=32, kernel_size=3, strides=(2, 2),
activation='relu'),
tf.keras.layers.Conv2D(
filters=64, kernel_size=3, strides=(2, 2),
activation='relu'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(400, activation='relu'),
# No activation
tf.keras.layers.Dense(latent_dim + latent_dim)
]
)
self.generative_net = tf.keras.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(latent_dim,)),
tf.keras.layers.Dense(400, activation='relu'),
tf.keras.layers.Dense(units=7 * 7 * 32, activation=tf.nn.relu),
tf.keras.layers.Reshape(target_shape=(7, 7, 32)),
tf.keras.layers.Conv2DTranspose(
filters=64,
kernel_size=3,
strides=(2, 2),
padding="SAME",
activation='relu'),
tf.keras.layers.Conv2DTranspose(
filters=32,
kernel_size=3,
strides=(2, 2),
padding="SAME",
activation='relu'),
# No activation
tf.keras.layers.Conv2DTranspose(
filters=1, kernel_size=3, strides=(1, 1), padding="SAME"),
]
)
def encode(self, x):
pass
def decode(self, x, z, return_probs=False):
logits = self.generative_net(z)
# Bernoullli observation model is equivalent to cross entropy loss
observation_dist = tfd.Bernoulli(logits=logits)
if return_probs:
return observation_dist.probs_parameter()
logpx_z = tf.reduce_sum(observation_dist.log_prob(x), axis=[1, 2, 3])
return logpx_z
class BVAE(VAE):
def __init__(self, latent_dim, prior_temperature=0.1):
super().__init__(latent_dim)
# even probability for 0 and 1
# note that the prior has a temperature, that does not need to be
# the same as the posterior
probs = 0.5 * tf.ones(latent_dim)
self.prior = tfd.Logistic(tf.math.log(probs) / prior_temperature,
1. / prior_temperature)
self.prior_sample_fun = lambda x: tf.sigmoid(self.prior.sample(x))
def encode(self, x, temperature=0.2):
logits, _ = tf.split(self.inference_net(x), num_or_size_splits=2,
axis=1)
# The temperature adjusts the relaxiation of the Concrete
# distribution. We use,
latent_dist = tfd.Logistic(logits / temperature, 1. / temperature)
# instead of
# tfd.RelaxedBernoulli(temperature=temperature, logits=logits).
# Otherwise we run into underflow issues when computing the
# log_prob. This has been expained in [2] Appendix C.3.2.
logistic_samples = latent_dist.sample()
return tf.sigmoid(logistic_samples), latent_dist.log_prob(
logistic_samples), self.prior.log_prob(
logistic_samples)
class NVAE(VAE):
def __init__(self, latent_dim):
super().__init__(latent_dim)
self.prior = tfd.Normal(loc=tf.zeros(latent_dim),
scale=tf.ones(latent_dim))
self.prior_sample_fun = self.prior.sample
def encode(self, x):
loc, logvar = tf.split(self.inference_net(x), num_or_size_splits=2,
axis=1)
latent_dist = tfd.Normal(loc=loc, scale=tf.exp(logvar))
latent_samples = latent_dist.sample()
return latent_samples, latent_dist.log_prob(
latent_samples), self.prior.log_prob(latent_samples)