diff --git a/cogs/gpt_3_commands_and_converser.py b/cogs/gpt_3_commands_and_converser.py index 136b58d3..e1016632 100644 --- a/cogs/gpt_3_commands_and_converser.py +++ b/cogs/gpt_3_commands_and_converser.py @@ -674,7 +674,10 @@ async def on_message(self, message): # Send the request to the model # If conversing, the prompt to send is the history, otherwise, it's just the prompt - if self.pinecone_service or message.channel.id not in self.conversation_threads: + if ( + self.pinecone_service + or message.channel.id not in self.conversation_threads + ): primary_prompt = prompt else: primary_prompt = "".join( @@ -724,44 +727,75 @@ async def encapsulated_send( new_prompt = prompt.encode("ascii", "ignore").decode() prompt_less_author = f"{new_prompt} <|endofstatement|>\n" - user_displayname = ctx.user.name if isinstance(ctx, discord.ApplicationContext) else ctx.author.display_name + user_displayname = ( + ctx.user.name + if isinstance(ctx, discord.ApplicationContext) + else ctx.author.display_name + ) - new_prompt = f"\n'{user_displayname}': {new_prompt} <|endofstatement|>\n" + new_prompt = ( + f"\n'{user_displayname}': {new_prompt} <|endofstatement|>\n" + ) # print("Creating embedding for ", prompt) # Print the current timestamp - timestamp = int(str(datetime.datetime.now().timestamp()).replace(".", "")) + timestamp = int( + str(datetime.datetime.now().timestamp()).replace(".", "") + ) starter_conversation_item = EmbeddedConversationItem( - str(self.conversation_threads[ctx.channel.id].history[0]), 0) - self.conversation_threads[ctx.channel.id].history[0] = starter_conversation_item + str(self.conversation_threads[ctx.channel.id].history[0]), 0 + ) + self.conversation_threads[ctx.channel.id].history[ + 0 + ] = starter_conversation_item new_prompt_item = EmbeddedConversationItem(new_prompt, timestamp) - self.conversation_threads[conversation_id].history.append(new_prompt_item) + self.conversation_threads[conversation_id].history.append( + new_prompt_item + ) # Create and upsert the embedding for the conversation id, prompt, timestamp - embedding = await self.pinecone_service.upsert_conversation_embedding(self.model, conversation_id, - new_prompt, timestamp) + embedding = await self.pinecone_service.upsert_conversation_embedding( + self.model, conversation_id, new_prompt, timestamp + ) - embedding_prompt_less_author = await self.model.send_embedding_request(prompt_less_author) # Use the version of + embedding_prompt_less_author = await self.model.send_embedding_request( + prompt_less_author + ) # Use the version of # the prompt without the author's name for better clarity on retrieval. # Now, build the new prompt by getting the X most similar with pinecone - similar_prompts = self.pinecone_service.get_n_similar(conversation_id, embedding_prompt_less_author, - n=self.model.num_conversation_lookback) + similar_prompts = self.pinecone_service.get_n_similar( + conversation_id, + embedding_prompt_less_author, + n=self.model.num_conversation_lookback, + ) # When we are in embeddings mode, only the pre-text is contained in self.conversation_threads[message.channel.id].history, so we # can use that as a base to build our new prompt - prompt_with_history = [self.conversation_threads[ctx.channel.id].history[0]] + prompt_with_history = [ + self.conversation_threads[ctx.channel.id].history[0] + ] # Append the similar prompts to the prompt with history - prompt_with_history += [EmbeddedConversationItem(prompt, timestamp) for prompt, timestamp in - similar_prompts] + prompt_with_history += [ + EmbeddedConversationItem(prompt, timestamp) + for prompt, timestamp in similar_prompts + ] # iterate UP TO the last X prompts in the history - for i in range(1, min(len(self.conversation_threads[ctx.channel.id].history), self.model.num_static_conversation_items)): - prompt_with_history.append(self.conversation_threads[ctx.channel.id].history[-i]) + for i in range( + 1, + min( + len(self.conversation_threads[ctx.channel.id].history), + self.model.num_static_conversation_items, + ), + ): + prompt_with_history.append( + self.conversation_threads[ctx.channel.id].history[-i] + ) # remove duplicates from prompt_with_history prompt_with_history = list(dict.fromkeys(prompt_with_history)) @@ -777,7 +811,9 @@ async def encapsulated_send( pass prompt_with_history.append(new_prompt_item) - prompt_with_history = "".join([item.text for item in prompt_with_history]) + prompt_with_history = "".join( + [item.text for item in prompt_with_history] + ) new_prompt = prompt_with_history @@ -788,7 +824,7 @@ async def encapsulated_send( id in self.conversation_threads and tokens > self.model.summarize_threshold and not from_g_command - and not self.pinecone_service # This should only happen if we are not doing summarizations. + and not self.pinecone_service # This should only happen if we are not doing summarizations. ): # We don't need to worry about the differences between interactions and messages in this block, @@ -850,27 +886,42 @@ async def encapsulated_send( ) # If the user is conversing, add the GPT response to their conversation history. - if id in self.conversation_threads and not from_g_command and not self.pinecone_service: + if ( + id in self.conversation_threads + and not from_g_command + and not self.pinecone_service + ): self.conversation_threads[id].history.append( "\nGPTie: " + str(response_text) + "<|endofstatement|>\n" ) # Embeddings case! - elif id in self.conversation_threads and not from_g_command and self.pinecone_service: + elif ( + id in self.conversation_threads + and not from_g_command + and self.pinecone_service + ): conversation_id = id # Create an embedding and timestamp for the prompt - response_text = "\nGPTie: " + str(response_text) + "<|endofstatement|>\n" + response_text = ( + "\nGPTie: " + str(response_text) + "<|endofstatement|>\n" + ) response_text = response_text.encode("ascii", "ignore").decode() # Print the current timestamp - timestamp = int(str(datetime.datetime.now().timestamp()).replace(".", "")) - self.conversation_threads[conversation_id].history.append(EmbeddedConversationItem(response_text, timestamp)) + timestamp = int( + str(datetime.datetime.now().timestamp()).replace(".", "") + ) + self.conversation_threads[conversation_id].history.append( + EmbeddedConversationItem(response_text, timestamp) + ) # Create and upsert the embedding for the conversation id, prompt, timestamp - embedding = await self.pinecone_service.upsert_conversation_embedding(self.model, conversation_id, - response_text, timestamp) + embedding = await self.pinecone_service.upsert_conversation_embedding( + self.model, conversation_id, response_text, timestamp + ) # Cleanse response_text = self.cleanse_response(response_text) diff --git a/gpt3discord.py b/gpt3discord.py index 271174ff..c6ad187a 100644 --- a/gpt3discord.py +++ b/gpt3discord.py @@ -40,7 +40,7 @@ pinecone_service = None if PINECONE_TOKEN: pinecone.init(api_key=PINECONE_TOKEN, environment="us-west1-gcp") - PINECONE_INDEX = "conversation-embeddings" # This will become unfixed later. + PINECONE_INDEX = "conversation-embeddings" # This will become unfixed later. pinecone_service = PineconeService(pinecone.Index(PINECONE_INDEX)) print("Got the pinecone service") diff --git a/models/autocomplete_model.py b/models/autocomplete_model.py index 1d845d97..7977feeb 100644 --- a/models/autocomplete_model.py +++ b/models/autocomplete_model.py @@ -27,17 +27,17 @@ async def get_value( ctx: discord.AutocompleteContext, ): # Behaves a bit weird if you go back and edit the parameter without typing in a new command values = { - "max_conversation_length": [str(num) for num in range(1,500,2)], - "num_images": [str(num) for num in range(1,4+1)], + "max_conversation_length": [str(num) for num in range(1, 500, 2)], + "num_images": [str(num) for num in range(1, 4 + 1)], "mode": ["temperature", "top_p"], "model": ["text-davinci-003", "text-curie-001"], "low_usage_mode": ["True", "False"], "image_size": ["256x256", "512x512", "1024x1024"], "summarize_conversation": ["True", "False"], "welcome_message_enabled": ["True", "False"], - "num_static_conversation_items": [str(num) for num in range(5,20+1)], - "num_conversation_lookback": [str(num) for num in range(5,15+1)], - "summarize_threshold": [str(num) for num in range(800, 3500, 50)] + "num_static_conversation_items": [str(num) for num in range(5, 20 + 1)], + "num_conversation_lookback": [str(num) for num in range(5, 15 + 1)], + "summarize_threshold": [str(num) for num in range(800, 3500, 50)], } if ctx.options["parameter"] in values.keys(): return [value for value in values[ctx.options["parameter"]]] diff --git a/models/openai_model.py b/models/openai_model.py index 160f4f1e..973f2964 100644 --- a/models/openai_model.py +++ b/models/openai_model.py @@ -93,7 +93,9 @@ def num_static_conversation_items(self, value): if value < 3: raise ValueError("num_static_conversation_items must be >= 3") if value > 20: - raise ValueError("num_static_conversation_items must be <= 20, this is to ensure reliability and reduce token wastage!") + raise ValueError( + "num_static_conversation_items must be <= 20, this is to ensure reliability and reduce token wastage!" + ) self._num_static_conversation_items = value @property @@ -106,7 +108,9 @@ def num_conversation_lookback(self, value): if value < 3: raise ValueError("num_conversation_lookback must be >= 3") if value > 15: - raise ValueError("num_conversation_lookback must be <= 15, this is to ensure reliability and reduce token wastage!") + raise ValueError( + "num_conversation_lookback must be <= 15, this is to ensure reliability and reduce token wastage!" + ) self._num_conversation_lookback = value @property @@ -358,7 +362,7 @@ async def send_embedding_request(self, text): "Authorization": f"Bearer {self.openai_key}", } async with session.post( - "https://api.openai.com/v1/embeddings", json=payload, headers=headers + "https://api.openai.com/v1/embeddings", json=payload, headers=headers ) as resp: response = await resp.json() @@ -474,8 +478,8 @@ async def send_request( "https://api.openai.com/v1/completions", json=payload, headers=headers ) as resp: response = await resp.json() - #print(f"Payload -> {payload}") - #print(f"Response -> {response}") + # print(f"Payload -> {payload}") + # print(f"Response -> {response}") # Parse the total tokens used for this request and response pair from the response await self.valid_text_request(response) diff --git a/models/pinecone_service_model.py b/models/pinecone_service_model.py index 708d63e8..d3e59045 100644 --- a/models/pinecone_service_model.py +++ b/models/pinecone_service_model.py @@ -2,7 +2,6 @@ class PineconeService: - def __init__(self, index: pinecone.Index): self.index = index @@ -10,15 +9,19 @@ def upsert_basic(self, text, embeddings): self.index.upsert([(text, embeddings)]) def get_all_for_conversation(self, conversation_id: int): - response = self.index.query(top_k=100, filter={"conversation_id": conversation_id}) + response = self.index.query( + top_k=100, filter={"conversation_id": conversation_id} + ) return response - async def upsert_conversation_embedding(self, model, conversation_id: int, text, timestamp): + async def upsert_conversation_embedding( + self, model, conversation_id: int, text, timestamp + ): # If the text is > 512 characters, we need to split it up into multiple entries. first_embedding = None if len(text) > 500: # Split the text into 512 character chunks - chunks = [text[i:i + 500] for i in range(0, len(text), 500)] + chunks = [text[i : i + 500] for i in range(0, len(text), 500)] for chunk in chunks: print("The split chunk is ", chunk) @@ -26,18 +29,39 @@ async def upsert_conversation_embedding(self, model, conversation_id: int, text, embedding = await model.send_embedding_request(chunk) if not first_embedding: first_embedding = embedding - self.index.upsert([(chunk, embedding)], metadata={"conversation_id": conversation_id, "timestamp": timestamp}) + self.index.upsert( + [(chunk, embedding)], + metadata={ + "conversation_id": conversation_id, + "timestamp": timestamp, + }, + ) return first_embedding else: embedding = await model.send_embedding_request(text) - self.index.upsert([(text, embedding, {"conversation_id": conversation_id, - "timestamp": timestamp})]) + self.index.upsert( + [ + ( + text, + embedding, + {"conversation_id": conversation_id, "timestamp": timestamp}, + ) + ] + ) return embedding def get_n_similar(self, conversation_id: int, embedding, n=10): - response = self.index.query(vector=embedding, top_k=n, include_metadata=True, filter={"conversation_id": conversation_id}) + response = self.index.query( + vector=embedding, + top_k=n, + include_metadata=True, + filter={"conversation_id": conversation_id}, + ) print(response) - relevant_phrases = [(match['id'],match['metadata']['timestamp']) for match in response['matches']] + relevant_phrases = [ + (match["id"], match["metadata"]["timestamp"]) + for match in response["matches"] + ] # Sort the relevant phrases based on the timestamp relevant_phrases.sort(key=lambda x: x[1]) - return relevant_phrases \ No newline at end of file + return relevant_phrases diff --git a/models/user_model.py b/models/user_model.py index 67cedf52..358ed436 100644 --- a/models/user_model.py +++ b/models/user_model.py @@ -73,6 +73,7 @@ def __repr__(self): def __str__(self): return self.__repr__() + class EmbeddedConversationItem: def __init__(self, text, timestamp): self.text = text @@ -104,5 +105,3 @@ def __ge__(self, other): def __ne__(self, other): return not self.__eq__(other) - -