-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathsample_hand_gesture_recognition.py
331 lines (287 loc) · 12.1 KB
/
sample_hand_gesture_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import copy
import argparse
from typing import List, Any, Dict, Tuple, Union
import cv2
import numpy as np
import mediapipe as mp # type:ignore
from mediapipe.tasks import python # type:ignore
from mediapipe.tasks.python import vision # type:ignore
from utils import CvFpsCalc
from utils.download_file import download_file
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--video", type=str, default=None)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument('--unuse_mirror', action='store_true')
parser.add_argument(
"--model",
type=int,
choices=[0],
default=0,
help='''
0:HandGestureClassifier
''',
)
args = parser.parse_args()
return args
def main() -> None:
# 引数解析
args = get_args()
cap_device: Union[int, str] = args.device
cap_width: int = args.width
cap_height: int = args.height
unuse_mirror: bool = args.unuse_mirror
model: int = args.model
if args.video is not None:
cap_device = args.video
model_url: List[str] = [
'https://storage.googleapis.com/mediapipe-models/gesture_recognizer/gesture_recognizer/float16/latest/gesture_recognizer.task',
]
# ダウンロードファイル名生成
model_name: str = model_url[model].split('/')[-1]
quantize_type: str = model_url[model].split('/')[-3]
split_name: List[str] = model_name.split('.')
model_name = split_name[0] + '_' + quantize_type + '.' + split_name[1]
# 重みファイルダウンロード
model_path: str = os.path.join('model', model_name)
if not os.path.exists(model_path):
download_file(url=model_url[model], save_path=model_path)
# カメラ準備
cap: cv2.VideoCapture = cv2.VideoCapture(cap_device)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, cap_height)
# GestureRecognizer生成
base_options: python.BaseOptions = python.BaseOptions(
model_asset_path=model_path)
options: vision.GestureRecognizerOptions = vision.GestureRecognizerOptions(
base_options=base_options)
recognizer: vision.GestureRecognizer = vision.GestureRecognizer.create_from_options(
options) # type:ignore
# FPS計測モジュール
cvFpsCalc: CvFpsCalc = CvFpsCalc(buffer_len=10)
while True:
display_fps: float = cvFpsCalc.get()
# カメラキャプチャ
ret: bool
frame: np.ndarray
ret, frame = cap.read()
if not ret:
break
if not unuse_mirror:
frame = cv2.flip(frame, 1) # ミラー表示
# 推論実施
rgb_frame: mp.Image = mp.Image(
image_format=mp.ImageFormat.SRGBA,
data=cv2.cvtColor(frame, cv2.COLOR_BGR2RGBA),
)
recognition_result: vision.HandLandmarkerResult = recognizer.recognize(
rgb_frame)
# 外接矩形計算
bboxes: List[List[int]] = calc_bounding_rect(frame, recognition_result)
# 描画
debug_image: np.ndarray = copy.deepcopy(frame)
debug_image = draw_debug(
debug_image,
recognition_result,
bboxes,
display_fps,
)
# 画面反映
cv2.imshow('MediaPipe Hand Gesture Recognition Demo', debug_image)
# キー処理(ESC:終了)
key: int = cv2.waitKey(1)
if key == 27: # ESC
break
cap.release()
cv2.destroyAllWindows()
def calc_bounding_rect(
image: np.ndarray,
recognition_result: vision.HandLandmarkerResult) -> List[List[int]]:
image_width, image_height = image.shape[1], image.shape[0]
bboxes: List[List[int]] = []
for hand_landmarks in recognition_result.hand_landmarks:
landmark_array: np.ndarray = np.empty((0, 2), int)
for landmark in hand_landmarks:
landmark_x: int = min(int(landmark.x * image_width),
image_width - 1)
landmark_y: int = min(int(landmark.y * image_height),
image_height - 1)
landmark_point: np.ndarray = np.array((landmark_x, landmark_y))
landmark_array = np.append(landmark_array, [landmark_point],
axis=0)
x, y, w, h = cv2.boundingRect(landmark_array)
bboxes.append([x, y, x + w, y + h])
return bboxes
def draw_debug(
image: np.ndarray,
recognition_result: vision.HandLandmarkerResult, # type:ignore
bboxes: List[List[int]],
display_fps: float,
) -> np.ndarray:
image_width, image_height = image.shape[1], image.shape[0]
landmark_draw_info: Dict[
int,
Dict[str, Union[str, Tuple[int, int, int]]],
] = {
0: { # 手首
'name': 'WRIST',
'color': (0, 255, 0) # 緑
},
1: { # 親指の手根中手関節(CM関節)
'name': 'THUMB_CMC',
'color': (255, 0, 0) # 赤
},
2: { # 親指の中手指節関節(MP関節)
'name': 'THUMB_MCP',
'color': (0, 0, 255) # 青
},
3: { # 親指の指節間関節(IP関節)
'name': 'THUMB_IP',
'color': (255, 255, 0) # 黄
},
4: { # 親指の指先
'name': 'THUMB_TIP',
'color': (0, 255, 255) # シアン
},
5: { # 人差し指の中手指節関節(MP関節)
'name': 'INDEX_FINGER_MCP',
'color': (255, 0, 255) # マゼンタ
},
6: { # 人差し指の近位指節間関節(PIP関節)
'name': 'INDEX_FINGER_PIP',
'color': (128, 128, 128) # グレー
},
7: { # 人差し指の遠位指節間関節(DIP関節)
'name': 'INDEX_FINGER_DIP',
'color': (255, 128, 0) # オレンジ
},
8: { # 人差し指の指先
'name': 'INDEX_FINGER_TIP',
'color': (128, 0, 255) # 紫
},
9: { # 中指の中手指節関節(MP関節)
'name': 'MIDDLE_FINGER_MCP',
'color': (0, 128, 255) # ライトブルー
},
10: { # 中指の近位指節間関節(PIP関節)
'name': 'MIDDLE_FINGER_PIP',
'color': (128, 255, 0) # ライム
},
11: { # 中指の遠位指節間関節(DIP関節)
'name': 'MIDDLE_FINGER_DIP',
'color': (255, 128, 128) # ライトレッド
},
12: { # 中指の指先
'name': 'MIDDLE_FINGER_TIP',
'color': (128, 128, 0) # オリーブ
},
13: { # 薬指の中手指節関節(MP関節)
'name': 'RING_FINGER_MCP',
'color': (0, 128, 128) # ティール
},
14: { # 薬指の近位指節間関節(PIP関節)
'name': 'RING_FINGER_PIP',
'color': (128, 0, 128) # マルーン
},
15: { # 薬指の遠位指節間関節(DIP関節)
'name': 'RING_FINGER_DIP',
'color': (64, 64, 64) # ダークグレー
},
16: { # 薬指の指先
'name': 'RING_FINGER_TIP',
'color': (192, 192, 192) # シルバー
},
17: { # 小指の中手指節関節(MP関節)
'name': 'PINKY_MCP',
'color': (255, 69, 0) # レッドオレンジ
},
18: { # 小指の近位指節間関節(PIP関節)
'name': 'PINKY_PIP',
'color': (75, 0, 130) # インディゴ
},
19: { # 小指の遠位指節間関節(DIP関節)
'name': 'PINKY_DIP',
'color': (173, 255, 47) # グリーンイエロー
},
20: { # 小指の指先
'name': 'PINKY_TIP',
'color': (220, 20, 60) # クリムゾン
}
}
line_info_list: List[List[int]] = [
[0, 1], # 手首から親指の手根中手関節(CM関節)
[1, 2], # 親指の手根中手関節(CM関節)から親指の中手指節関節(MP関節)
[2, 3], # 親指の中手指節関節(MP関節)から親指の指節間関節(IP関節)
[3, 4], # 親指の指節間関節(IP関節)から親指の指先
[0, 5], # 手首から人差し指の中手指節関節(MP関節)
[5, 6], # 人差し指の中手指節関節(MP関節)から人差し指の近位指節間関節(PIP関節)
[6, 7], # 人差し指の近位指節間関節(PIP関節)から人差し指の遠位指節間関節(DIP関節)
[7, 8], # 人差し指の遠位指節間関節(DIP関節)から人差し指の指先
[0, 9], # 手首から中指の中手指節関節(MP関節)
[9, 10], # 中指の中手指節関節(MP関節)から中指の近位指節間関節(PIP関節)
[10, 11], # 中指の近位指節間関節(PIP関節)から中指の遠位指節間関節(DIP関節)
[11, 12], # 中指の遠位指節間関節(DIP関節)から中指の指先
[0, 13], # 手首から薬指の中手指節関節(MP関節)
[13, 14], # 薬指の中手指節関節(MP関節)から薬指の近位指節間関節(PIP関節)
[14, 15], # 薬指の近位指節間関節(PIP関節)から薬指の遠位指節間関節(DIP関節)
[15, 16], # 薬指の遠位指節間関節(DIP関節)から薬指の指先
[0, 17], # 手首から小指の中手指節関節(MP関節)
[17, 18], # 小指の中手指節関節(MP関節)から小指の近位指節間関節(PIP関節)
[18, 19], # 小指の近位指節間関節(PIP関節)から小指の遠位指節間関節(DIP関節)
[19, 20] # 小指の遠位指節間関節(DIP関節)から小指の指先
]
for handedness, hand_landmarks, _, gestures, bbox in zip(
recognition_result.handedness,
recognition_result.hand_landmarks,
recognition_result.hand_world_landmarks,
recognition_result.gestures,
bboxes,
):
# 各ランドマーク情報整理
landmark_dict: Dict[int, List[Union[int, float]]] = {}
for index, landmark in enumerate(hand_landmarks):
if landmark.visibility < 0 or landmark.presence < 0:
continue
landmark_x: int = min(int(landmark.x * image_width),
image_width - 1)
landmark_y: int = min(int(landmark.y * image_height),
image_height - 1)
landmark_dict[index] = [landmark_x, landmark_y, landmark.z]
# 接続線描画
for line_info in line_info_list:
cv2.line(image, tuple(landmark_dict[line_info[0]][:2]),
tuple(landmark_dict[line_info[1]][:2]), (220, 220, 220),
3, cv2.LINE_AA) # type:ignore
# 各ランドマーク描画
for index, landmark in landmark_dict.items():
cv2.circle(image, (landmark[0], landmark[1]), 5,
landmark_draw_info[index]['color'], -1,
cv2.LINE_AA) # type:ignore
# 外接矩形描画
cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
(0, 255, 0), 2)
# 左右描画
gesture_text = handedness[0].display_name
gesture_text += ': ' + gestures[0].category_name
gesture_text += '(' + str(round(gestures[0].score, 2)) + ')'
cv2.putText(image, gesture_text, (bbox[0], bbox[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 0), 2, cv2.LINE_AA)
# FPS
cv2.putText(
image,
"FPS:" + str(display_fps),
(10, 30),
cv2.FONT_HERSHEY_SIMPLEX,
1.0,
(0, 255, 0),
2,
cv2.LINE_AA,
)
return image
if __name__ == '__main__':
main()