-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathsample_text_classification.py
90 lines (70 loc) · 2.62 KB
/
sample_text_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import argparse
from typing import List
import time
from mediapipe.tasks import python # type:ignore
from mediapipe.tasks.python import text # type:ignore
from utils.download_file import download_file
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_text",
type=str,
default="I'm looking forward to what will come next.",
)
parser.add_argument(
"--model",
type=int,
choices=[0, 1],
default=0,
help='''
0:BERT-classifier
1:Average word embedding
''',
)
args = parser.parse_args()
return args
def main() -> None:
# 引数解析
args: argparse.Namespace = get_args()
input_text: str = args.input_text
model: int = args.model
model_url: List[str] = [
'https://storage.googleapis.com/mediapipe-models/text_classifier/bert_classifier/float32/latest/bert_classifier.tflite',
'https://storage.googleapis.com/mediapipe-models/text_classifier/average_word_classifier/float32/latest/average_word_classifier.tflite',
]
# ダウンロードファイル名生成
model_name: str = model_url[model].split('/')[-1]
quantize_type: str = model_url[model].split('/')[-3]
split_name: List[str] = model_name.split('.')
model_name = split_name[0] + '_' + quantize_type + '.' + split_name[1]
# 重みファイルダウンロード
model_path: str = os.path.join('model', model_name)
if not os.path.exists(model_path):
download_file(url=model_url[model], save_path=model_path)
# Text Classifier生成
base_options: python.BaseOptions = python.BaseOptions(
model_asset_path=model_path)
options: text.TextClassifierOptions = text.TextClassifierOptions(
base_options=base_options, )
classifier: text.TextClassifier = text.TextClassifier.create_from_options(
options) # type:ignore
# 処理時間計測開始
start_time: float = time.time()
# 推論実施
classification_result: text.TextClassifierResult = classifier.classify(
input_text)
top_category = classification_result.classifications[0].categories[0]
# 処理時間計測終了
end_time: float = time.time()
elapsed_time: int = int((end_time - start_time) * 1000)
print()
print('MediaPipe Text Classification Demo')
print(' Input:', input_text)
print(' Top Category:', top_category.category_name)
print(' Score:', top_category.score)
print(' Processing time:', elapsed_time, 'ms')
if __name__ == '__main__':
main()