forked from chaomath/open3d-kitti-visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkitti_utils.py
158 lines (131 loc) · 4.64 KB
/
kitti_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import numpy as np
# classes
class_list = [
'Car', 'Van', 'Truck', 'Pedestrian',
'Person_sitting', 'Cyclist', 'Tram', 'Misc']
colors_list = [
[1, 0, 0], # car------------------>red
[0.5, 1, 0], # Van
[0, 1, 0.5], # Truck
[0, 1, 0], # Pedestrian----------->green
[0.2, 0.5, 0], # Person_sitting
[0, 0, 1], # Cyclist-------------->blue
[0.7, 0.7, 0.3], # Tram
[0.2, 0.5, 0.7]] # Misc
def load_kitti_calib(calib_file):
"""
load projection matrix
"""
with open(calib_file) as fi:
lines = fi.readlines()
assert (len(lines) == 8)
obj = lines[0].strip().split(' ')[1:]
# P0 = np.array(obj, dtype=np.float32)
obj = lines[1].strip().split(' ')[1:]
# P1 = np.array(obj, dtype=np.float32)
obj = lines[2].strip().split(' ')[1:]
P2 = np.array(obj, dtype=np.float32)
obj = lines[3].strip().split(' ')[1:]
# P3 = np.array(obj, dtype=np.float32)
obj = lines[4].strip().split(' ')[1:]
R0 = np.array(obj, dtype=np.float32)
obj = lines[5].strip().split(' ')[1:]
Tr_velo_to_cam = np.array(obj, dtype=np.float32)
obj = lines[6].strip().split(' ')[1:]
# Tr_imu_to_velo = np.array(obj, dtype=np.float32)
return {'P2': P2.reshape(3, 4),
'R0': R0.reshape(3, 3),
'Tr_velo2cam': Tr_velo_to_cam.reshape(3, 4)}
def project_cam2velo(cam, Tr):
T = np.zeros([4, 4], dtype=np.float32)
T[:3, :] = Tr
T[3, 3] = 1
T_inv = np.linalg.inv(T)
lidar_loc_ = np.dot(T_inv, cam)
lidar_loc = lidar_loc_[:3]
return lidar_loc.reshape(1, 3)
def ry_to_rz(ry):
angle = -ry - np.pi / 2
if angle >= np.pi:
angle -= np.pi
if angle < -np.pi:
angle = 2*np.pi + angle
return angle
class KittiObject(object):
''' kitti 3d object label '''
def __init__(self, label_file_line):
data = label_file_line.split(' ')
data[1:] = [float(x) for x in data[1:]]
# extract label, truncation, occlusion
self.type = data[0] # 'Car', 'Pedestrian', ...
self.truncation = data[1] # truncated pixel ratio [0..1]
self.occlusion = int(data[2])
# 0=visible, 1=partly occluded, 2=fully occluded, 3=unknown
self.alpha = data[3] # object observation angle [-pi..pi]
# extract 2d bounding box in 0-based coordinates
self.xmin = data[4] # left
self.ymin = data[5] # top
self.xmax = data[6] # right
self.ymax = data[7] # bottom
self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
# extract 3d bounding box information
self.h = data[8] # box height
self.w = data[9] # box width
self.l = data[10] # box length (in meters)
self.t = (data[11], data[12], data[13])
# location (x,y,z) in camera coord.
self.ry = data[14]
# yaw angle (around Y-axis in camera coordinates) [-pi..pi]
def __str__(self):
str0 = (
'Type, truncation, occlusion, alpha: %s, %d, %d, %f\n' %
(self.type, self.truncation, self.occlusion, self.alpha))
str1 = (
'2d bbox (x0,y0,x1,y1): %f, %f, %f, %f\n' %
(self.xmin, self.ymin, self.xmax, self.ymax))
str2 = (
'3d bbox h,w,l: %f, %f, %f\n' %
(self.h, self.w, self.l))
str3 = (
'3d bbox location, ry: (%f, %f, %f), %f\n' %
(self.t[0], self.t[1], self.t[2], self.ry))
return (str0 + str1 + str2 + str3)
def get_obj_type(obj_str):
obj_type = -1
for i in range(len(class_list)):
if obj_str == class_list[i]:
obj_type = i
return obj_type
def read_objs2velo(label_file, Tr_velo2cam):
'''
Tr_velo2cam: (3, 4)
'''
lines = [line.rstrip() for line in open(label_file)]
objs_velo = []
objs_type = []
for line in lines:
obj = KittiObject(line)
if obj.type == 'DontCare':
continue
obj_type = get_obj_type(obj.type)
h = obj.h
w = obj.w
l = obj.l
x = obj.t[0]
y = obj.t[1]
z = obj.t[2]
ry = obj.ry
rz = ry_to_rz(ry) # ry in camera, rz in velo
pos_cam = np.ones([4, 1])
pos_cam[0] = x
pos_cam[1] = y
pos_cam[2] = z
pos_velo = project_cam2velo(pos_cam, Tr_velo2cam) # pos_velo: (1,3)
x_velo = pos_velo[0][0]
y_velo = pos_velo[0][1]
z_velo = pos_velo[0][2]
obj_velo = [h, w, l, x_velo, y_velo, z_velo, rz, obj_type]
objs_type.append(obj_type)
objs_velo.append(obj_velo)
objs_velo = np.array(objs_velo) # (n, 8)
return objs_velo, objs_type