forked from blackfeather-wang/GFNet-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigs.py
139 lines (138 loc) · 4.29 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from PIL import Image
configurations = {
'resnet50': {
'feature_num': 2048,
'feature_map_channels': 2048,
'policy_conv': False,
'policy_hidden_dim':1024,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bicubic'
},
'densenet121': {
'feature_num': 1024,
'feature_map_channels': 1024,
'policy_conv': False,
'policy_hidden_dim':1024,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear'
},
'densenet169': {
'feature_num': 1664,
'feature_map_channels': 1664,
'policy_conv': False,
'policy_hidden_dim':1024,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear'
},
'densenet201': {
'feature_num': 1920,
'feature_map_channels': 1920,
'policy_conv': False,
'policy_hidden_dim':1024,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear'
},
'mobilenetv3_large_100': {
'feature_num': 1280,
'feature_map_channels': 960,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': False,
'fc_hidden_dim': None,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bicubic'
},
'mobilenetv3_large_125': {
'feature_num': 1280,
'feature_map_channels': 1200,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': False,
'fc_hidden_dim': None,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bicubic'
},
'efficientnet_b2': {
'feature_num': 1408,
'feature_map_channels': 1408,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': False,
'fc_hidden_dim': None,
'image_size': 260,
'crop_pct': 0.875,
'dataset_interpolation': Image.BICUBIC,
'prime_interpolation': 'bicubic'
},
'efficientnet_b3': {
'feature_num': 1536,
'feature_map_channels': 1536,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': False,
'fc_hidden_dim': None,
'image_size': 300,
'crop_pct': 0.904,
'dataset_interpolation': Image.BICUBIC,
'prime_interpolation': 'bicubic'
},
'regnety_600m': {
'feature_num': 608,
'feature_map_channels': 608,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear',
'cfg_file': 'pycls/cfgs/RegNetY-600MF_dds_8gpu.yaml'
},
'regnety_800m': {
'feature_num': 768,
'feature_map_channels': 768,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear',
'cfg_file': 'pycls/cfgs/RegNetY-800MF_dds_8gpu.yaml'
},
'regnety_1.6g': {
'feature_num': 888,
'feature_map_channels': 888,
'policy_conv': True,
'policy_hidden_dim': 256,
'fc_rnn': True,
'fc_hidden_dim': 1024,
'image_size': 224,
'crop_pct': 0.875,
'dataset_interpolation': Image.BILINEAR,
'prime_interpolation': 'bilinear',
'cfg_file': 'pycls/cfgs/RegNetY-1.6GF_dds_8gpu.yaml'
}
}