-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathsemantics_reference.h
505 lines (428 loc) · 15.1 KB
/
semantics_reference.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*******************************************************************************
//
// SYCL 2020 Conformance Test Suite
//
// Copyright (c) 2023 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
*******************************************************************************/
#ifndef __SYCLCTS_TESTS_COMMON_SEMANTICS_BY_REFERENCE_H
#define __SYCLCTS_TESTS_COMMON_SEMANTICS_BY_REFERENCE_H
#include "common.h"
#include <numeric>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
namespace common_reference_semantics {
/**
Tests the copy/move constructible/assignable and destructible traits using
the standard library. */
struct test_traits {
static constexpr std::size_t result_count = 5;
/** Performs the check, can be run on host side or kernel side. */
template <typename T, typename VectorType>
static void run(VectorType& vec) {
std::size_t i = 0;
vec[i++] = std::is_copy_constructible_v<T>;
vec[i++] = std::is_copy_assignable_v<T>;
vec[i++] = std::is_destructible_v<T>;
vec[i++] = std::is_move_constructible_v<T>;
vec[i++] = std::is_move_assignable_v<T>;
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("traits");
UNSCOPED_INFO("is_copy_constructible_v");
CHECK(vec[i++]);
UNSCOPED_INFO("is_copy_assignable_v");
CHECK(vec[i++]);
UNSCOPED_INFO("is_destructible_v");
CHECK(vec[i++]);
UNSCOPED_INFO("is_move_constructible_v");
CHECK(vec[i++]);
UNSCOPED_INFO("is_move_assignable_v");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/** Tests copy constructible/assignable using a user-defined storage class. */
struct test_copy {
static constexpr std::size_t result_count = 2;
/** Performs the check, can be run on host side or kernel side. */
template <typename Storage, typename T, typename VectorType>
static void run(VectorType& vec, const T& t) {
std::size_t i = 0;
Storage storage(t);
// Copy constructible
T s0(t);
vec[i++] = storage.check(s0);
// Copy assignable
T s1 = t;
vec[i++] = storage.check(s1);
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("copy");
UNSCOPED_INFO("constructible");
CHECK(vec[i++]);
UNSCOPED_INFO("assignable");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/** Tests move constructible/assignable using a user-defined storage class. */
struct test_move {
static constexpr std::size_t result_count = 2;
/**
Performs the check, can be run on host side or kernel side.
A non-const instance is required as it is moved in this test, which
may invalidate the instance. */
template <typename Storage, typename T, typename VectorType>
static void run(VectorType& vec, T& t) {
std::size_t i = 0;
Storage storage(t);
// Move constructible
T s0(std::move(t));
vec[i++] = storage.check(s0);
// Move assignable
T s1 = std::move(s0); // NB: move s0, not t
vec[i++] = storage.check(s1);
assert(result_count == i);
}
/** Always run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("move");
UNSCOPED_INFO("constructible");
CHECK(vec[i++]);
UNSCOPED_INFO("assignable");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/** Tests equality using the equals-operator. */
struct test_equality {
static constexpr std::size_t result_count = 5;
/** Performs the check, can be run on host side or kernel side. */
template <typename T, typename VectorType>
static void run(VectorType& vec, const T& t) {
std::size_t i = 0;
{ // Equality via copy and symmetry: copy constructor
T s(t);
vec[i++] = t == s && s == t;
}
{ // Equality via copy and symmetry: copy assignment
T s = t;
vec[i++] = t == s && s == t;
}
{ // Reflexivity
vec[i++] = t == t;
}
{ // Transitivity: copy constructor
T s(t);
T u(s);
vec[i++] = t == u && u == t;
}
{ // Transitivity: copy assignment
T s = t;
T u = s;
vec[i++] = t == u && u == t;
}
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("equality comparable");
UNSCOPED_INFO("symmetry: copy constructor");
CHECK(vec[i++]);
UNSCOPED_INFO("symmetry: copy assignment");
CHECK(vec[i++]);
UNSCOPED_INFO("reflexivity");
CHECK(vec[i++]);
UNSCOPED_INFO("transitivity: copy constructor");
CHECK(vec[i++]);
UNSCOPED_INFO("transitivity: copy assignment");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/**
Helper function for comparing to standard library hashes, to make a
compiler-specific exception. */
template <typename T>
bool hash_equality_helper(const T& t0, const T& t1) {
return std::hash<T>{}(t0) == std::hash<T>{}(t1);
}
/** Tests equality using the hash functionality of the standard library. */
struct test_equality_hash {
static constexpr std::size_t result_count = 5;
/** Performs the check, can be run on host side or kernel side. */
template <typename T, typename VectorType>
static void run(VectorType& vec, const T& t) {
std::size_t i = 0;
{ // Equality via copy and symmetry: copy constructor
T s(t);
vec[i++] = hash_equality_helper(t, s);
}
{ // Equality via copy and symmetry: copy assignment
T s = t;
vec[i++] = hash_equality_helper(t, s);
}
{ // Reflexivity
vec[i++] = hash_equality_helper(t, t);
}
{ // Transitivity: copy constructor
T s(t);
T u(s);
vec[i++] = hash_equality_helper(t, u);
}
{ // Transitivity: copy assignment
T s = t;
T u = s;
vec[i++] = hash_equality_helper(t, u);
}
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("equality comparable (hash)");
UNSCOPED_INFO("symmetry: copy constructor");
CHECK(vec[i++]);
UNSCOPED_INFO("symmetry: copy assignment");
CHECK(vec[i++]);
UNSCOPED_INFO("reflexivity");
CHECK(vec[i++]);
UNSCOPED_INFO("transitivity: copy constructor");
CHECK(vec[i++]);
UNSCOPED_INFO("transitivity: copy assignment");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/** Tests inequality using the equals-operator. */
struct test_inequality {
static constexpr std::size_t result_count = 1;
/**
Performs the check, can be run on host side or kernel side.
To test inequality, a second instance is required, which must be
non-equal to the first instance. */
template <typename T, typename VectorType>
static void run(VectorType& vec, const T& t0, const T& t1) {
std::size_t i = 0;
// Symmetry
vec[i++] = t0 != t1 && t1 != t0;
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("inequality comparable");
UNSCOPED_INFO("symmetry");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/**
Helper function for comparing to standard library hashes, to make a
compiler-specific exception. */
template <typename T>
bool hash_inequality_helper(const T& t0, const T& t1) {
return std::hash<T>{}(t0) != std::hash<T>{}(t1);
}
/** Tests inequality using the hash functionality of the standard library. */
struct test_inequality_hash {
static constexpr std::size_t result_count = 1;
/**
Performs the check, can be run on host side or kernel side.
To test inequality, a second instance is required, which must be
non-equal to the first instance. */
template <typename T, typename VectorType>
static void run(VectorType& vec, const T& t0, const T& t1) {
std::size_t i = 0;
// Symmetry
vec[i++] = hash_inequality_helper(t0, t1);
assert(result_count == i);
}
/** Evaluates the results, must be run on host side. */
template <typename VectorType>
static void evaluate(VectorType& vec) {
std::size_t i = 0;
INFO("inequality comparable (hash)");
UNSCOPED_INFO("symmetry");
CHECK(vec[i++]);
assert(result_count == i);
}
};
/**
Tests the common reference semantics:
traits, equality, hash equality, copy. */
template <typename storage, typename T>
void check_host_impl(const T& t, const std::string& type_name) {
INFO("checking reference semantics on the host application for type \""
<< type_name << "\"");
std::size_t result_count =
test_traits::result_count + test_equality::result_count +
test_equality_hash::result_count + test_copy::result_count;
std::vector<int> results(result_count, false);
auto ptr = results.data();
test_traits::run<T>(ptr);
ptr += test_traits::result_count;
test_equality::run(ptr, t);
ptr += test_equality::result_count;
test_equality_hash::run(ptr, t);
ptr += test_equality_hash::result_count;
test_copy::run<storage>(ptr, t);
ptr += test_copy::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
ptr = results.data();
test_traits::evaluate(ptr);
ptr += test_traits::result_count;
test_equality::evaluate(ptr);
ptr += test_equality::result_count;
test_equality_hash::evaluate(ptr);
ptr += test_equality_hash::result_count;
test_copy::evaluate(ptr);
ptr += test_copy::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
}
/** Tests the common reference semantics: inequality, hash inequality. */
template <typename T>
void check_host_impl_inequality(const T& t0, const T& t1) {
std::size_t result_count =
test_inequality::result_count + test_inequality_hash::result_count;
std::vector<int> results(result_count, false);
auto ptr = results.data();
test_inequality::run(ptr, t0, t1);
ptr += test_inequality::result_count;
test_inequality_hash::run(ptr, t0, t1);
ptr += test_inequality_hash::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
ptr = results.data();
test_inequality::evaluate(ptr);
ptr += test_inequality::result_count;
test_inequality_hash::evaluate(ptr);
ptr += test_inequality_hash::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
}
/**
Tests the common reference semantics: move.
Instance is passed as non-const, invalidates the instance. */
template <typename storage, typename T>
void check_host_impl_move(T& t) {
std::size_t result_count = test_move::result_count;
std::vector<int> results(result_count, false);
auto ptr = results.data();
test_move::run<storage>(ptr, t);
ptr += test_move::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
ptr = results.data();
test_move::evaluate(ptr);
ptr += test_copy::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
}
/**
Tests all common reference semantics on the host application,
for a const instance. Invalidates the instance. */
template <typename storage, typename T>
void check_host(const T& t, const std::string& type_name) {
// usage in check_host_impl implies that t must be non-const
check_host_impl<storage>(t, type_name);
}
/**
Tests all common reference semantics on the host application,
for a non-const instance. Invalidates the instance.
Is a super set of the const instance tests. */
template <typename storage, typename T>
void check_host(T& t, const std::string& type_name) {
check_host_impl<storage>(t, type_name);
check_host_impl_move<storage>(t); // last since invalidates instance
}
/**
Tests all common reference semantics on the host application,
for a non-const instance and a const second and unequal instance.
Invalidates the first instance.
Is a super set of the non-const instance tests. */
template <typename storage, typename T>
void check_host(T& t0, const T& t1, const std::string& type_name) {
check_host_impl<storage>(t0, type_name);
check_host_impl_inequality(t0, t1);
check_host_impl_move<storage>(t0); // last since invalidates instance
}
template <typename T>
struct kernel_name;
/**
Tests all common reference semantics in a device function.
The function \p init_func takes a sycl::handler and returns an instance of
type \p T. */
template <typename storage, typename T, typename InitFunc>
void check_kernel(InitFunc init_func, const std::string& type_name,
const std::vector<sycl::aspect>& requirements = {}) {
auto queue = sycl_cts::util::get_cts_object::queue();
for (const sycl::aspect& req : requirements) {
if (!queue.get_device().has(req)) {
WARN("Device does not support " +
Catch::StringMaker<sycl::aspect>::convert(req));
return;
}
}
INFO("checking reference semantics in kernel function for type \""
<< type_name << "\"");
std::size_t result_count = test_traits::result_count +
test_copy::result_count + test_move::result_count;
std::vector<int> results(result_count, false);
{
sycl::buffer<int> buffer(results.data(), sycl::range<1>{result_count});
queue.submit([&](sycl::handler& cgh) {
auto accessor = buffer.template get_access<sycl::access_mode::write>(cgh);
T t = init_func(cgh);
// use non-simple parallel_for to be able to use local_accessor
cgh.parallel_for<kernel_name<T>>(
sycl::nd_range<1>{sycl::range<1>{1}, sycl::range<1>{1}},
[=](sycl::nd_item<1> nd_item) {
auto ptr = accessor.begin();
test_traits::run<T>(ptr);
ptr += test_traits::result_count;
test_copy::run<storage>(ptr, t);
ptr += test_copy::result_count;
test_move::run<storage>(ptr, t); // last since invalidates instance
ptr += test_move::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) ==
ptr - accessor.begin());
});
});
}
auto ptr = results.data();
test_traits::evaluate(ptr);
ptr += test_traits::result_count;
test_copy::evaluate(ptr);
ptr += test_copy::result_count;
test_move::evaluate(ptr);
ptr += test_move::result_count;
assert(static_cast<std::ptrdiff_t>(result_count) == ptr - results.data());
}
} // namespace common_reference_semantics
#endif // __SYCLCTS_TESTS_COMMON_SEMANTICS_BY_REFERENCE_H