forked from dmMaze/comic-text-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
db_dataset.py
285 lines (258 loc) · 11.4 KB
/
db_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import yaml
import torch
import glob
import os
import os.path as osp
import random
from itertools import repeat
from multiprocessing.pool import Pool, ThreadPool
from pathlib import Path
from threading import Thread
import cv2
from torch.utils.data import Dataset
from tqdm import tqdm
from pathlib import Path
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset, dataloader
from utils.general import LOGGER, Loggers, CUDA, DEVICE
from utils.db_utils import MakeBorderMap, MakeShrinkMap
from seg_dataset import augment_hsv
from utils.imgproc_utils import rotate_polygons, letterbox, resize_keepasp
from PIL import Image
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) # DPP
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of multiprocessing threads
IMG_EXT = ['.bmp', '.jpg', '.png', '.jpeg']
def db_val_collate_fn(batchs):
cat_list = ['text_polys', 'ignore_tags']
ret_batchs = {}
for key in batchs[0].keys():
ret_batchs[key] = []
for batch in batchs:
if isinstance(batch[key], np.ndarray):
batch[key] = torch.from_numpy(batch[key])
ret_batchs[key].append(batch[key])
if key in cat_list:
pass
else:
ret_batchs[key] = torch.stack(ret_batchs[key], 0)
return ret_batchs
class LoadImageAndAnnotations(Dataset):
def __init__(self, img_dir, ann_dir=None, img_size=640, augment=False, aug_param=None, cache=False, stride=128, cache_ann_only=True, with_ann=False):
if isinstance(img_dir, str):
self.img_dir = [img_dir]
elif isinstance(img_dir, list):
self.img_dir = img_dir
else:
raise Exception('unknown img_dir format')
if ann_dir is None or ann_dir == '':
self.ann_dir = self.img_dir
else:
if isinstance(ann_dir, str):
self.ann_dir = [ann_dir]
elif isinstance(ann_dir, list):
self.ann_dir = ann_dir
self.with_ann = with_ann
self.make_border_map = MakeBorderMap(shrink_ratio=0.4)
self.make_shrink_map = MakeShrinkMap(shrink_ratio=0.4)
self.img_ann_list = []
self.img_size = (img_size, img_size)
self.stride = stride
self._augment = augment
if self._augment:
self._mini_mosaic = aug_param['mini_mosaic']
self._augment_hsv = aug_param['hsv']
self._flip_lr = aug_param['flip_lr']
self._neg = aug_param['neg']
self._rotate = aug_param['rotate']
self.rotate_range = aug_param['rotate_range']
size_range = aug_param['size_range']
if isinstance(size_range, list) and size_range[0] > 0:
min_size = round(img_size * size_range[0] / stride ) * stride
max_size = round(img_size * size_range[1] / stride ) * stride
self.valid_size = np.arange(min_size, max_size+1, stride)
self.multi_size = True
else:
self.valid_size = None
self.multi_size = False
for img_dir in self.img_dir:
for filep in glob.glob(osp.join(img_dir, "*")):
filename = osp.basename(filep)
file_suffix = Path(filename).suffix
if file_suffix not in IMG_EXT:
continue
annname = 'line-' + filename.replace(file_suffix, '.txt')
for ann_dir in self.ann_dir:
annp = osp.join(ann_dir, annname)
if osp.exists(annp):
self.img_ann_list.append((filep, annp))
self._img_transform = transforms.Compose([transforms.ToTensor()])
n = len(self.img_ann_list)
self.imgs, self.anns = [None] * n, [None] * n
gb = 0
if cache:
results = ThreadPool(NUM_THREADS).imap(lambda x: load_image_annotations(*x, max_size=img_size), zip(repeat(self), range(n)))
pbar = tqdm(enumerate(results), total=n)
for i, x in pbar:
im, self.anns[i] = x # im, hw_orig, hw_resized = load_image_ann(self, i)
if not cache_ann_only:
self.imgs[i] = im
gb += self.imgs[i].nbytes
gb += self.anns[i].nbytes
if gb / 1E9 > 7:
break
pbar.desc = f'Caching images ({gb / 1E9:.1f}GB )'
pbar.close()
def initialize(self):
if self.augment:
if self.multi_size:
self.img_size = random.choice(self.valid_size)
def transform(self, img):
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
img = img.astype(np.float32) / 255
img = self._img_transform(img)
return img
def mini_mosaic(self, img, ann):
im_h, im_w = img.shape[:2]
idx = random.randint(0, len(self)-1)
img2, ann2 = load_image_annotations(self, idx, self.img_size)
img2_h, img2_w = img2.shape[:2]
if img2_h > img2_w:
imm_h = max(im_h, img2_h)
imm_w = im_w + img2_w
im_tmp = np.zeros((imm_h, imm_w, 3), np.uint8)
im_tmp[:im_h, :im_w] = img
im_tmp[:img2_h, im_w:] = img2
ann[:, :, 0] = ann[:, :, 0] * im_w / imm_w
ann[:, :, 1] = ann[:, :, 1] * im_h / imm_h
if ann2.shape[1] > 0:
ann2[:, :, 0] = ann2[:, :, 0] * img2_w / imm_w + im_w / imm_w
ann2[:, :, 1] = ann2[:, :, 1] * img2_h / imm_h
ann = np.concatenate((ann, ann2))
img = im_tmp
return img, ann
else:
return img, ann
def augment(self, img, ann):
im_h, im_w = img.shape[0], img.shape[1]
if im_h > im_w and random.random() < self._mini_mosaic:
# imp2, annp2 = random.choice(self.img_ann_list)
img, ann = self.mini_mosaic(img, ann)
if random.random() < self._augment_hsv:
augment_hsv(img)
if random.random() < self._flip_lr:
cv2.flip(img, 1, img)
ann[:, :, 0] = 1 - ann[:, :, 0]
if random.random() < self._neg:
img = 255 - img
if random.random() < self._rotate:
degrees = random.uniform(self.rotate_range[0], self.rotate_range[1])
if abs(degrees) > 15:
img = Image.fromarray(img)
center = (img.width/2, img.height/2)
ann[:, :, 0] *= img.width
ann[:, :, 1] *= img.height
ann = ann.reshape(len(ann), -1)
img = img.rotate(degrees, resample=Image.BILINEAR, expand=1)
new_center = (img.width/2, img.height/2)
ann = rotate_polygons(center, ann, degrees, new_center, to_int=False)
ann = ann.reshape(len(ann), -1, 2)
ann[:, :, 0] /= img.width
ann[:, :, 1] /= img.height
img = np.asarray(img)
return img, ann
def inverse_transform(self, img: torch.Tensor, scale=255, to_uint8=True):
img = img.permute(1, 2, 0)
img = img * scale
img = img.cpu().numpy()
if to_uint8:
img = np.ascontiguousarray(img, np.uint8)
return img
def __len__(self):
return len(self.img_ann_list)
def __getitem__(self, idx):
img, ann = load_image_annotations(self, idx, self.img_size)
in_h, in_w = img.shape[:2]
if self._augment:
img, ann = self.augment(img, ann)
ignore_tags = [False] * ann.shape[0]
img, ratio, (dw, dh) = letterbox(img, new_shape=self.img_size, auto=False)
im_h, im_w = img.shape[:2]
if ann is not None:
ann[:, :, 0] *= (im_w - dw)
ann[:, :, 1] *= (im_h - dh)
ann = ann.astype(np.int64)
data_dict = {'imgs': img, 'text_polys': ann, 'ignore_tags': ignore_tags}
shrink_map = self.make_shrink_map(data_dict)
thresh_map = self.make_border_map(data_dict)
tp = thresh_map.pop('text_polys')
it = thresh_map.pop('ignore_tags')
if self.with_ann:
thresh_map['text_polys'] = torch.from_numpy(np.array(tp))
thresh_map['ignore_tags'] = torch.from_numpy(np.array(it))
thresh_map['imgs'] = self.transform(thresh_map['imgs'])
return thresh_map
def load_image_annotations(self, i, max_size=None, ann_abs2rel=True):
# loads 1 image from dataset index 'i', returns im, original hw, resized hw
img, ann = self.imgs[i], self.anns[i]
imp, ann_path = self.img_ann_list[i]
if img is None:
img = cv2.imread(imp)
im_h, im_w = img.shape[:2]
if ann is None:
ann = np.loadtxt(ann_path)
if len(ann.shape) == 1:
ann = np.array([ann])
if ann_abs2rel:
ann[:, ::2] /= im_w
ann[:, 1::2] /= im_h
ann = ann.reshape(len(ann), -1, 2)
else:
ann = np.copy(ann)
if max_size is not None:
if isinstance(max_size, tuple):
max_size = max_size[0]
img = resize_keepasp(img, max_size)
return img, ann
def create_dataloader(img_dir, ann_dir, imgsz, batch_size, augment=False, aug_param=None, cache=False, workers=8, shuffle=False, with_ann=False):
dataset = LoadImageAndAnnotations(img_dir, ann_dir, imgsz, augment, aug_param, cache, with_ann=with_ann)
batch_size = min(batch_size, len(dataset))
nw = min([os.cpu_count() // WORLD_SIZE, batch_size if batch_size > 1 else 0, workers]) # number of workers
if with_ann:
collate_fn = db_val_collate_fn
else:
collate_fn = None
loader = DataLoader(dataset, batch_size=batch_size, shuffle=shuffle, pin_memory=True, num_workers=nw, collate_fn=collate_fn)
return dataset, loader
if __name__ == '__main__':
img_dir = 'data/dataset/db_sub'
hyp_p = r'data/train_db_hyp.yaml'
with open(hyp_p, 'r', encoding='utf8') as f:
hyp = yaml.safe_load(f.read())
hyp['data']['train_img_dir'] = img_dir
hyp['data']['cache'] = False
hyp_train, hyp_data, hyp_model, hyp_logger, hyp_resume = hyp['train'], hyp['data'], hyp['model'], hyp['logger'], hyp['resume']
batch_size = hyp_train['batch_size']
batch_size = 1
num_workers = 0
train_img_dir, train_mask_dir, imgsz, augment, aug_param = hyp_data['train_img_dir'], hyp_data['train_mask_dir'], hyp_data['imgsz'], hyp_data['augment'], hyp_data['aug_param']
train_dataset, train_loader = create_dataloader(train_img_dir, train_mask_dir, imgsz, batch_size, augment, aug_param, shuffle=True, workers=num_workers, cache=hyp_data['cache'], with_ann=True)
for ii in range(10):
for batchs in train_loader:
train_dataset.initialize()
print(train_dataset.img_size)
img = batchs['imgs'][0]
img = train_dataset.inverse_transform(img)
threshold_map = batchs['threshold_map'][0]
threshold_mask = batchs['threshold_mask'][0]
shrink_map = batchs['shrink_map'][0]
shrink_mask = batchs['shrink_mask'][0]
polys = batchs['text_polys'][0].numpy().astype(np.int32)
for p in polys:
cv2.polylines(img,[p],True,(255, 0, 0), thickness=2)
cv2.imshow('imgs', img)
cv2.imshow('threshold_map', threshold_map.numpy())
cv2.imshow('threshold_mask', threshold_mask.numpy())
cv2.imshow('shrink_map', shrink_map.numpy())
cv2.imshow('shrink_mask', shrink_mask.numpy())
cv2.waitKey(0)