We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
在使用kan模型时,pykan版本为0.0.2:
将data['test_input']和data['test_label']设置为一个是153的数组,一个是151的数组,里面都是1,得到的训练结果如下: 再将data['test_input']和data['test_label']设置为一个是13的数组,一个是11的数组,里面都是1,得到的训练结果如下: 再将data['test_input']和data['test_label']设置为真实的测试集,test_input的维度为153,test_label的维度为151,得到的训练结果如下: 可见data['test_input']和data['test_label']的值确实没有参与模型的训练过程,但是他们的维度对训练结果有影响 请问有人遇到过类似的情况吗?
The text was updated successfully, but these errors were encountered:
训练过程存在一定的随机性吧,更改两个测试集的时候有重新训练吗?如果是同一个模型计算出来的R2值不一样就是存在bug(训练集所有输入都相同,R2这些指标也应该相同);如果是两个不同的模型,那R2这些指标肯定会有差异,你的差异这么大感觉是因为模型对全1的数据拟合不好
Sorry, something went wrong.
更改测试集的的时候是重新训练过的,是同一个模型计算出不同的R2值(只是改了测试集,其他的所有参数都没改变)
No branches or pull requests
在使用kan模型时,pykan版本为0.0.2:
将data['test_input']和data['test_label']设置为一个是153的数组,一个是151的数组,里面都是1,得到的训练结果如下:
再将data['test_input']和data['test_label']设置为一个是13的数组,一个是11的数组,里面都是1,得到的训练结果如下:
再将data['test_input']和data['test_label']设置为真实的测试集,test_input的维度为153,test_label的维度为151,得到的训练结果如下:
可见data['test_input']和data['test_label']的值确实没有参与模型的训练过程,但是他们的维度对训练结果有影响
请问有人遇到过类似的情况吗?
The text was updated successfully, but these errors were encountered: