-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
249 lines (217 loc) · 7.68 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import models
from layer import Layer, LayerGroup
import options as opt
def get_graph_vgg(vgg):
D = dict()
n = 0
V = []
E = [[]]
def record_hook(module, input, output):
key = id(module)
if key not in D:
D[key] = len(V)
V.append(Layer(module, input[0].shape, output.shape))
hooks = []
for module in vgg.modules():
if isinstance(module, Layer.supported_base):
hooks.append(module.register_forward_hook(record_hook))
input = torch.rand(1, 3, 32, 32, device=opt.device)
output = vgg(input)
for hook in hooks:
hook.remove()
n = len(V)
E = [([False] * n) for i in range(n)]
for i in range(n - 1):
E[i][i + 1] = True
return n, V, E
def get_graph_resnet(resnet):
D = dict()
n = 0
V = []
E = [[]]
def record_hook(module, input, output):
key = id(module)
if key not in D:
D[key] = len(V)
V.append(Layer(module, input[0].shape, output.shape))
def add_edge(src, dst):
i = D[id(src)]
j = D[id(dst)]
E[i][j] = True
def add_chain(ls):
for i in range(len(ls) - 1):
add_edge(ls[i], ls[i + 1])
hooks = []
for module in resnet.modules():
if isinstance(module, Layer.supported_base):
hooks.append(module.register_forward_hook(record_hook))
input = torch.rand(1, 3, 32, 32, device=opt.device)
output = resnet(input)
for hook in hooks:
hook.remove()
n = len(V)
E = [([False] * n) for i in range(n)]
chain = [resnet.conv1, resnet.bn1, resnet.relu1]
add_chain(chain)
src = [resnet.relu1]
for module in resnet.modules():
if isinstance(module, models.BasicBlockM):
chain = [module.conv1, module.bn1, module.relu1,
module.conv2, module.bn2, module.relu2]
add_chain(chain)
dst = [module.conv1]
src_ = [module.relu2]
if module.downsample is not None:
chain = list(module.downsample.children())
add_chain(chain)
dst.append(chain[0])
add_edge(chain[-1], module.relu2)
else:
dst.append(module.relu2)
for s in src:
for d in dst:
add_edge(s, d)
src = src_
dst = []
chain = [resnet.avgpool, resnet.flatten, resnet.fc]
for s in src:
add_edge(s, chain[0])
add_chain(chain)
return n, V, E
def get_graph_shufflenet(shufflenet):
D = dict()
n = 0
V = []
E = [[]]
def record_hook(module, input, output):
key = id(module)
if key not in D:
D[key] = len(V)
in_shape = input[0][0].shape if isinstance(input[0], list) else input[0].shape
out_shape = output.shape
V.append(Layer(module, in_shape, out_shape))
def add_edge(src, dst):
i = D[id(src)]
j = D[id(dst)]
E[i][j] = True
def add_chain(ls):
for i in range(len(ls) - 1):
add_edge(ls[i], ls[i + 1])
hooks = []
for module in shufflenet.modules():
if isinstance(module, Layer.supported_base):
hooks.append(module.register_forward_hook(record_hook))
input = torch.rand(1, 3, 32, 32, device=opt.device)
output = shufflenet(input)
for hook in hooks:
hook.remove()
n = len(V)
E = [([False] * n) for i in range(n)]
chain = [shufflenet.conv1, shufflenet.bn1, shufflenet.relu1]
add_chain(chain)
src = [shufflenet.relu1]
for module in shufflenet.modules():
if isinstance(module, models.BottleneckM):
chain = [module.conv1, module.bn1, module.relu1, module.shuffle,
module.conv2, module.bn2,
module.conv3, module.bn3]
add_chain(chain)
dst = [module.conv1]
src_ = [module.relu3]
if module.stride == 2:
dst.append(module.conv4)
add_edge(module.conv4, module.avgpool)
add_edge(module.avgpool, module.concat)
add_edge(module.bn3, module.concat)
add_edge(module.concat, module.relu3)
else:
add_edge(module.bn3, module.relu3)
dst.append(module.relu3)
for s in src:
for d in dst:
add_edge(s, d)
src = src_
dst = []
chain = [shufflenet.avgpool, shufflenet.flatten, shufflenet.fc]
for s in src:
add_edge(s, chain[0])
add_chain(chain)
return n, V, E
def get_groups(V):
if opt.co_graph_gen == 'get_graph_shufflenet':
groups = []
in_layers = list(range(1, 4))
out_layers = list(range(0, 3))
groups.append(LayerGroup(-1, in_layers, out_layers))
in_layers = list(range(4, 11)) + list(range(13, 43))
out_layers = list(range(3, 11)) + list(range(13, 42))
groups.append(LayerGroup(-1, in_layers, out_layers))
in_layers = list(range(43, 50)) + list(range(52, 118))
out_layers = list(range(42, 50)) + list(range(52, 117))
groups.append(LayerGroup(-1, in_layers, out_layers))
in_layers = list(range(118, 125)) + list(range(127, 159))
out_layers = list(range(117, 125)) + list(range(127, 158))
groups.append(LayerGroup(-1, in_layers, out_layers))
return groups
else:
n = len(V)
vis = [([False] * 2) for i in range(n)]
vis[0][0] = True
vis[-1][1] = True
groups = []
for i in range(n):
for j in range(2):
if not vis[i][j]:
F = V[i].out_shape[1] if j else V[i].in_shape[1]
in_layers = []
out_layers = []
for k in range(n):
if not vis[k][0] and V[k].in_shape[1] == F:
in_layers.append(k)
vis[k][0] = True
if not vis[k][1] and V[k].out_shape[1] == F:
out_layers.append(k)
vis[k][1] = True
groups.append(LayerGroup(F, in_layers, out_layers))
return groups
def get_links(E):
n = len(E)
in_links = [[] for i in range(n)]
out_links = [[] for i in range(n)]
for i in range(n):
for j in range(n):
if E[i][j]:
in_links[j].append(i)
out_links[i].append(j)
return in_links, out_links
def get_plot(name, n, V, E, reduced=False):
from graphviz import Digraph
dot = Digraph(name=name)
for i, v in enumerate(V):
node_name = '%d %s %s->%s' % (i, v.base_type,
str(list(v.in_shape)[1:]), str(list(v.out_shape)[1:]))
colors = ['gray', 'gray', 'gray', 'gray', 'red', 'yellow', 'yellow', 'green', 'cyan', 'blue']
if v.base_type != 'Identity' or not reduced:
color = colors[Layer.supported_base.index(type(v.base))]
dot.node(str(i), node_name, shape='box', color=color)
if reduced:
for i in range(n):
if V[i].base_type == 'Identity':
in_links = []
out_links = []
for j in range(n):
if E[j][i]:
in_links.append(j)
E[j][i] = False
if E[i][j]:
out_links.append(j)
E[i][j] = False
for u in in_links:
for v in out_links:
E[u][v] = True
for i in range(n):
for j in range(n):
if E[i][j]:
dot.edge(str(i), str(j))
dot.view()