-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnmt.py
193 lines (170 loc) · 7.19 KB
/
nmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import torch
import torch.nn as nn
import torchtext.datasets as datasets
from torchtext.datasets import TranslationDataset, Multi30k
from torchtext.data import Field, BucketIterator, ReversibleField
import os
import argparse
import spacy
import wandb
import revtok
from experiment import NMTExperiment
from common import train_nmt, eval_nmt, convert_sentence_to_tensor, convert_tensor_to_sentence, translate_sentence
from models.NMTModels import TransformerSeq2Seq, AttnSeq2Seq
parser = argparse.ArgumentParser(description='Neural machine translation')
# task params
parser.add_argument('--name', type=str, default=None)
parser.add_argument('--nepochs', type=int, default=100)
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
# model params
parser.add_argument('--model', type=str,
choices=['RNN', 'MemRNN', 'Trans'],
default='RNN')
parser.add_argument('--nhid', type=int, default=256,
help='hidden units')
parser.add_argument('--nhead', type=int, default=8,
help='attention heads')
parser.add_argument('--nenc', type=int, default=3,
help='number of encoder layers')
parser.add_argument('--ndec', type=int, default=3,
help='number of decoder layers')
parser.add_argument('--logfreq', type=int, default=500,
help='frequency to log outputs')
parser.add_argument('--nhenc', type=int, default=8,
help='number of encoder attention heads')
parser.add_argument('--nhdec', type=int, default=8,
help='number of decoder attention heads')
parser.add_argument('--nonlin', type=str, default='relu',
help='Non linearity, locked to tanh for LSTM')
parser.add_argument('--demb', type=int, default=512,
help='embedding vector size')
parser.add_argument('--dropout', type=float, default=0.1,
help='dropout for embedding layers')
#optim params/data params
parser.add_argument('--opt', type=str, default='Adam',
choices=['SGD', 'RMSProp', 'Adam'])
parser.add_argument('--lr', type=float, default=0.0005)
parser.add_argument('--lr_orth', type=float, default=None)
parser.add_argument('--alpha', type=float, default=None)
parser.add_argument('--beta0', type=float, default=0.9)
parser.add_argument('--beta1', type=float, default=0.999)
parser.add_argument('--cuda', action='store_true', default=False)
parser.add_argument('--device', type=int, default=None)
def run():
args = parser.parse_args()
hyper_parameter_defaults = dict(
opt='RMSProp',
nonlin='relu',
batch_size=12,
learning_rate=0.0002,
betas=(0.5, 0.999),
alpha=0.9
)
if args.device is not None:
args.device = torch.device(f'cuda:{args.device}')
# wandb
if args.name is None:
run = wandb.init(project="gradientsandtranslation2",
config=hyper_parameter_defaults)
wandb.config["more"] = "custom"
# save run to get readable run name
run.save()
run.name = os.path.join('NMT', run.name)
config = wandb.config
config.save_dir = os.path.join('experiments', 'NMT', run.name)
run.save()
else:
run = wandb.init(project="gradientsandtranslation",
config=hyper_parameter_defaults,
name=args.name)
wandb.config["more"] = "custom"
run.name = os.path.join('NMT', run.name)
config = wandb.config
config.save_dir = os.path.join('experiments', 'NMT', args.name)
run.save()
# update config object with args
wandb.config.update(args, allow_val_change=True)
# set up language
try:
spacy_en = spacy.load('en')
except OSError as e:
print(e)
print('Downloading model...')
os.system('python -m spacy download en')
spacy_en = spacy.load('en')
try:
spacy_de = spacy.load('de')
except OSError as e:
print(e)
print('Downloading model...')
os.system('python -m spacy download de')
spacy_de = spacy.load('de')
def tokenize_de(text):
"""
Tokenizes German text from a string into a list of strings (tokens) and reverses it
"""
return [tok.text for tok in spacy_de.tokenizer(text)]#[::-1]
def tokenize_en(text):
"""
Tokenizes English text from a string into a list of strings (tokens)
"""
return [tok.text for tok in spacy_en.tokenizer(text)]
if args.model == 'Trans':
batch_first = True
else:
batch_first = False
SRC = Field(tokenize_de,
init_token='<sos>',
eos_token='<eos>',
lower=True,
batch_first=batch_first)
TRG = Field(tokenize_en,
init_token='<sos>',
eos_token='<eos>',
lower=True,
batch_first=batch_first)
train_data, val_data, test_data = Multi30k.splits(exts=('.de', '.en'),
fields=(SRC, TRG))
SRC.build_vocab(train_data, min_freq=2)
TRG.build_vocab(train_data, min_freq=2)
config.SRCPADIDX = SRC.vocab.stoi[SRC.pad_token]
config.TRGPADIDX = TRG.vocab.stoi[TRG.pad_token]
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, val_data, test_data),
batch_size=config.batch_size)
config.inp_size = len(SRC.vocab)
config.out_size = len(TRG.vocab)
# create experiment management object
experiment = NMTExperiment(config)
model = experiment.model
wandb.watch(model)
criterion = nn.CrossEntropyLoss(ignore_index=config.TRGPADIDX)
for i in range(config.nepochs):
train_loss = train_nmt(experiment.model, train_iterator,
experiment.optimizer, criterion, config, run,
SRC, TRG)
val_loss = eval_nmt(model, valid_iterator, criterion, config, run, SRC, TRG)
# visualize an example
for example_idx in [8]:
src = vars(train_data.examples[example_idx])['src']
trg = vars(train_data.examples[example_idx])['trg']
translation_inds, translation, attention = translate_sentence(src, SRC, TRG, spacy_de,
model, config, max_len=50)
src = [SRC.init_token] + src + [SRC.eos_token]
attn = attention[0, :, :, :].mean(dim=0).cpu().numpy()
attn_data = []
for m in range(attn.shape[0]):
for n in range(attn.shape[1]):
attn_data.append([n, m, src[n], translation[m], attn[m, n]])
data_table = wandb.Table(data=attn_data, columns=["s_ind", "t_ind", "s_word", "t_word", "attn"])
fields = {
"sindex": "s_ind",
"tindex": "t_ind",
"sword": "s_word",
"tword": "t_word",
"attn": "attn"
}
wandb.log({"my_nlp_viz_id": wandb.plot_table("kylegoyette/nlp-attention-visualization", data_table, fields)})
print(f'Epoch: {i} Train Loss: {train_loss} Val Loss {val_loss}')
if __name__ == '__main__':
run()