You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I was working on the algorithm, running all the parameters as required. This is the output shown. Can you please help with it?
C:\Users\User\Desktop\Home>python C:\Users\User\Desktop\Home>python C:\Users\User\Desktop\Home\ACRNet\main.py --data-dir C:\Users\User\Desktop\Home\COST2100 --reduction 4 --expansion 1 --batch-size 200 --scenario in --workers 0
I 09.13/12:19 C:\Users\User\Desktop\Home\ACRNet\main.py:35 ] => PyTorch Version: 1.9.0+cpu
I 09.13/12:19 C:\Users\User\Desktop\Home\ACRNet\main.py:14 ] Running on CPU
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\model\acrnet.py:117 ] => Model ACRNet with reduction=4, expansion=1
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ] => Model Name: ACRNet
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ] => Model Config: compression ratio=1/4; expansion=1
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ]
Traceback (most recent call last):
File "C:\Users\User\Desktop\Home\ACRNet\main.py", line 35, in
main()
File "C:\Users\User\Desktop\Home\ACRNet\main.py", line 31, in main
Tester(model, device, criterion, print_freq=20)(test_loader)
File "C:\Users\User\Desktop\Home\ACRNet\utils\solver.py", line 35, in call
loss, rho, nmse = self._iteration(test_data)
File "C:\Users\User\Desktop\Home\ACRNet\utils\solver.py", line 56, in _iteration
rho, nmse = evaluator(sparse_pred, sparse_gt, raw_gt)
File "C:\Users\User\Desktop\Home\ACRNet\utils\statics.py", line 60, in evaluator
raw_pred = torch.fft(sparse_pred, signal_ndim=1)[:, :, :125, :]
TypeError: 'module' object is not callable
The text was updated successfully, but these errors were encountered:
I was working on the algorithm, running all the parameters as required. This is the output shown. Can you please help with it?
C:\Users\User\Desktop\Home>python C:\Users\User\Desktop\Home>python C:\Users\User\Desktop\Home\ACRNet\main.py --data-dir C:\Users\User\Desktop\Home\COST2100 --reduction 4 --expansion 1 --batch-size 200 --scenario in --workers 0
I 09.13/12:19 C:\Users\User\Desktop\Home\ACRNet\main.py:35 ] => PyTorch Version: 1.9.0+cpu
I 09.13/12:19 C:\Users\User\Desktop\Home\ACRNet\main.py:14 ] Running on CPU
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\model\acrnet.py:117 ] => Model ACRNet with reduction=4, expansion=1
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ] => Model Name: ACRNet
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ] => Model Config: compression ratio=1/4; expansion=1
I 09.13/12:20 C:\Users\User\Desktop\Home\ACRNet\main.py:24 ]
ACRNet(
(encoder_feature): Sequential(
(conv5x5_bn): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu): PReLU(num_parameters=2)
(ACREncoderBlock1): ACREncoderBlock(
(conv_bn1): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu1): PReLU(num_parameters=2)
(conv_bn2): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu2): PReLU(num_parameters=2)
(identity): Identity()
)
(ACREncoderBlock2): ACREncoderBlock(
(conv_bn1): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu1): PReLU(num_parameters=2)
(conv_bn2): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu2): PReLU(num_parameters=2)
(identity): Identity()
)
)
(encoder_fc): Linear(in_features=2048, out_features=512, bias=True)
(decoder_fc): Linear(in_features=512, out_features=2048, bias=True)
(decoder_feature): Sequential(
(conv5x5_bn): ConvBN(
(conv): Conv2d(2, 2, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu): PReLU(num_parameters=2)
(ACRDecoderBlock1): ACRDecoderBlock(
(conv1_bn): ConvBN(
(conv): Conv2d(2, 8, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(bn): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu1): PReLU(num_parameters=8)
(conv2_bn): ConvBN(
(conv): Conv2d(8, 8, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=4, bias=False)
(bn): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu2): PReLU(num_parameters=8)
(conv3_bn): ConvBN(
(conv): Conv2d(8, 2, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu3): PReLU(num_parameters=2)
(identity): Identity()
)
(ACRDecoderBlock2): ACRDecoderBlock(
(conv1_bn): ConvBN(
(conv): Conv2d(2, 8, kernel_size=(1, 9), stride=(1, 1), padding=(0, 4), bias=False)
(bn): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu1): PReLU(num_parameters=8)
(conv2_bn): ConvBN(
(conv): Conv2d(8, 8, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), groups=4, bias=False)
(bn): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu2): PReLU(num_parameters=8)
(conv3_bn): ConvBN(
(conv): Conv2d(8, 2, kernel_size=(9, 1), stride=(1, 1), padding=(4, 0), bias=False)
(bn): BatchNorm2d(2, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(prelu3): PReLU(num_parameters=2)
(identity): Identity()
)
(sigmoid): Sigmoid()
)
)
Traceback (most recent call last):
File "C:\Users\User\Desktop\Home\ACRNet\main.py", line 35, in
main()
File "C:\Users\User\Desktop\Home\ACRNet\main.py", line 31, in main
Tester(model, device, criterion, print_freq=20)(test_loader)
File "C:\Users\User\Desktop\Home\ACRNet\utils\solver.py", line 35, in call
loss, rho, nmse = self._iteration(test_data)
File "C:\Users\User\Desktop\Home\ACRNet\utils\solver.py", line 56, in _iteration
rho, nmse = evaluator(sparse_pred, sparse_gt, raw_gt)
File "C:\Users\User\Desktop\Home\ACRNet\utils\statics.py", line 60, in evaluator
raw_pred = torch.fft(sparse_pred, signal_ndim=1)[:, :, :125, :]
TypeError: 'module' object is not callable
The text was updated successfully, but these errors were encountered: