forked from lx-cly/YOLOv5_OBB_KLD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
480 lines (431 loc) · 18 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
# --------------------------------------------------------
# dota_evaluation_task1
# Licensed under The MIT License [see LICENSE for details]
# Written by Jian Ding, based on code from Bharath Hariharan
# --------------------------------------------------------
"""
To use the code, users should to config detpath, annopath and imagesetfile
detpath is the path for 15 result files, for the format, you can refer to "http://captain.whu.edu.cn/DOTAweb/tasks.html"
search for PATH_TO_BE_CONFIGURED to config the paths
Note, the evaluation is on the large scale images
"""
import xml.etree.ElementTree as ET
import os
#import cPickle
import numpy as np
import matplotlib.pyplot as plt
from utils import polyiou
from functools import partial
import pdb
from utils.evaluation_utils import mergebypoly, evaluation_trans,evaluation_trans_s,image2txt_s, image2txt, draw_DOTA_image
def parse_gt(filename):
"""
:param filename: ground truth file to parse
:return: all instances in a picture
"""
objects = []
with open(filename, 'r') as f:
while True:
line = f.readline()
if line:
splitlines = line.strip().split(' ')
object_struct = {}
if (len(splitlines) < 9):
continue
object_struct['name'] = splitlines[8]
# if (len(splitlines) == 9):
# object_struct['difficult'] = 0
# elif (len(splitlines) == 10):
# object_struct['difficult'] = int(splitlines[9])
object_struct['difficult'] = 0
object_struct['bbox'] = [float(splitlines[0]),
float(splitlines[1]),
float(splitlines[2]),
float(splitlines[3]),
float(splitlines[4]),
float(splitlines[5]),
float(splitlines[6]),
float(splitlines[7])]
objects.append(object_struct)
else:
break
return objects
def voc_ap(rec, prec, use_07_metric=False):
""" ap = voc_ap(rec, prec, [use_07_metric])
Compute VOC AP given precision and recall.
If use_07_metric is true, uses the
VOC 07 11 point method (default:False).
"""
if use_07_metric:
# 11 point metric
ap = 0.
for t in np.arange(0., 1.1, 0.1):
if np.sum(rec >= t) == 0:
p = 0
else:
p = np.max(prec[rec >= t])
ap = ap + p / 11.
else:
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def voc_eval(detpath,
annopath,
imagesetfile,
classname,
# cachedir,
ovthresh=0.5,
use_07_metric=False):
"""rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
[ovthresh],
[use_07_metric])
Top level function that does the PASCAL VOC evaluation.
detpath: Path to detections
detpath.format(classname) should produce the detection results file.
annopath: Path to annotations
annopath.format(imagename) should be the xml annotations file.
imagesetfile: Text file containing the list of images, one image per line.
classname: Category name (duh)
cachedir: Directory for caching the annotations
[ovthresh]: Overlap threshold (default = 0.5)
[use_07_metric]: Whether to use VOC07's 11 point AP computation
(default False)
"""
# assumes detections are in detpath.format(classname)
# assumes annotations are in annopath.format(imagename)
# assumes imagesetfile is a text file with each line an image name
# cachedir caches the annotations in a pickle file
# first load gt
#if not os.path.isdir(cachedir):
# os.mkdir(cachedir)
#cachefile = os.path.join(cachedir, 'annots.pkl')
# read list of images
with open(imagesetfile, 'r') as f:
lines = f.readlines()
imagenames = [x.strip() for x in lines]
#print('imagenames: ', imagenames)
#if not os.path.isfile(cachefile):
# load annots
recs = {}
for i, imagename in enumerate(imagenames):
#print('parse_files name: ', annopath.format(imagename))
recs[imagename] = parse_gt(annopath.format(imagename))
# extract gt objects for this class
class_recs = {}
npos = 0
for imagename in imagenames:
R = [obj for obj in recs[imagename] if obj['name'] == classname]
bbox = np.array([x['bbox'] for x in R])
difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
det = [False] * len(R)
npos = npos + sum(~difficult)
class_recs[imagename] = {'bbox': bbox,
'difficult': difficult,
'det': det}
# read dets from Task1* files
detfile = detpath.format(classname)
with open(detfile, 'r') as f:
lines = f.readlines()
splitlines = [x.strip().split(' ') for x in lines]
image_ids = [x[0] for x in splitlines]
confidence = np.array([float(x[1]) for x in splitlines])
#print('check confidence: ', confidence)
BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
# sort by confidence
sorted_ind = np.argsort(-confidence)
sorted_scores = np.sort(-confidence)
#print('check sorted_scores: ', sorted_scores)
#print('check sorted_ind: ', sorted_ind)
## note the usage only in numpy not for list
BB = BB[sorted_ind, :]
image_ids = [image_ids[x] for x in sorted_ind]
#print('check imge_ids: ', image_ids)
#print('imge_ids len:', len(image_ids))
# go down dets and mark TPs and FPs
nd = len(image_ids)
tp = np.zeros(nd)
fp = np.zeros(nd)
for d in range(nd):
R = class_recs[image_ids[d]]
bb = BB[d, :].astype(float)
ovmax = -np.inf
BBGT = R['bbox'].astype(float)
## compute det bb with each BBGT
if BBGT.size > 0:
# compute overlaps
# intersection
# 1. calculate the overlaps between hbbs, if the iou between hbbs are 0, the iou between obbs are 0, too.
# pdb.set_trace()
BBGT_xmin = np.min(BBGT[:, 0::2], axis=1)
BBGT_ymin = np.min(BBGT[:, 1::2], axis=1)
BBGT_xmax = np.max(BBGT[:, 0::2], axis=1)
BBGT_ymax = np.max(BBGT[:, 1::2], axis=1)
bb_xmin = np.min(bb[0::2])
bb_ymin = np.min(bb[1::2])
bb_xmax = np.max(bb[0::2])
bb_ymax = np.max(bb[1::2])
ixmin = np.maximum(BBGT_xmin, bb_xmin)
iymin = np.maximum(BBGT_ymin, bb_ymin)
ixmax = np.minimum(BBGT_xmax, bb_xmax)
iymax = np.minimum(BBGT_ymax, bb_ymax)
iw = np.maximum(ixmax - ixmin + 1., 0.)
ih = np.maximum(iymax - iymin + 1., 0.)
inters = iw * ih
# union
uni = ((bb_xmax - bb_xmin + 1.) * (bb_ymax - bb_ymin + 1.) +
(BBGT_xmax - BBGT_xmin + 1.) *
(BBGT_ymax - BBGT_ymin + 1.) - inters)
overlaps = inters / uni
BBGT_keep_mask = overlaps > 0
BBGT_keep = BBGT[BBGT_keep_mask, :]
BBGT_keep_index = np.where(overlaps > 0)[0]
# pdb.set_trace()
def calcoverlaps(BBGT_keep, bb):
overlaps = []
for index, GT in enumerate(BBGT_keep):
overlap = polyiou.iou_poly(polyiou.VectorDouble(BBGT_keep[index]), polyiou.VectorDouble(bb))
overlaps.append(overlap)
return overlaps
if len(BBGT_keep) > 0:
overlaps = calcoverlaps(BBGT_keep, bb)
ovmax = np.max(overlaps)
jmax = np.argmax(overlaps)
# pdb.set_trace()
jmax = BBGT_keep_index[jmax]
if ovmax > ovthresh:
if not R['difficult'][jmax]:
if not R['det'][jmax]:
tp[d] = 1.
R['det'][jmax] = 1
else:
fp[d] = 1.
else:
fp[d] = 1.
# compute precision recall
# print('check fp:', fp)
# print('check tp', tp)
#
#
# print('npos num:', npos)
# a = np.sum(tp)
# R = a/float(npos)
# P = a/len(tp)
# print('R',R,'P',P)
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / float(npos)
# avoid divide by zero in case the first detection matches a difficult
# ground truth
prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
ap = voc_ap(rec, prec, use_07_metric)
##计算 某个点的 rec 和 prec
return rec, prec, ap
def evaluation_samll(detoutput='/workspace/detectionlx',imageset='/data_all/data/DOTA/Ship_dota_v1.5_1024/val/images',
annopath='/data_all/data/DOTA/Ship_dota_v1.5_1024/val/labelTxt/{:s}.txt', classnames=['ship']):
"""
评估程序
@param detoutput: detect.py函数的结果存放输出路径
@param imageset: # val DOTA原图数据集图像路径
@param annopath: 'r/.../{:s}.txt' 原始val测试集的DOTAlabels路径
@param classnames: 测试集中的目标种类
"""
result_before_merge_path = str(detoutput + '/result_txt/result_before_merge')
result_classname_path = str(detoutput + '/result_txt/result_classname')
imageset_name_file_path = str(detoutput + '/result_txt')
#
# # see demo for example
# # mergebypoly(
# # result_before_merge_path,
# # result_merged_path
# # )
# #print('检测结果已merge')
evaluation_trans_s(
result_before_merge_path,
result_classname_path
)
print('检测结果已按照类别分类')
image2txt_s(
imageset, # val原图数据集路径
imageset_name_file_path
)
print('校验数据集名称文件已生成')
#
# detpath = str('/workspace/YOLOv5_DOTA_OBB/Task1_{:s}.txt') # 'r/.../Task1_{:s}.txt' 存放各类别结果文件txt的路径
# annopath = annopath
# imagesetfile = str('/workspace/detection1/result_txt/simgnamefile.txt') # 'r/.../imgnamefile.txt' 测试集图片名称txt
detpath = str(result_classname_path + '/Tasks1_{:s}.txt') # 'r/.../Task1_{:s}.txt' 存放各类别结果文件txt的路径
annopath = annopath
imagesetfile = str(imageset_name_file_path +'/simgnamefile.txt') # 'r/.../imgnamefile.txt' 测试集图片名称txt
classaps = []
map, mp, mr,map95 = 0, 0, 0, 0
#ovthresh =[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
skippedClassCount = 0
for classname in classnames:
print('classname:', classname)
detfile = detpath.format(classname)
if not (os.path.exists(detfile)):
skippedClassCount += 1
print('This class is not be detected in your dataset: {:s}'.format(classname))
continue
rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
ovthresh=0.5,
use_07_metric=True)
map = map + ap
mp = mp + prec[-1]#.mean()
mr = mr + rec[-1]#.mean()
# print('rec: ', rec, 'prec: ', prec, 'ap: ', ap)
# print('ap: ', ap)
classaps.append(ap)
#print('compute [email protected]~0.95')
# for ii in range(len(ovthresh)):
# _, _, ap95 = voc_eval(detpath,
# annopath,
# imagesetfile,
# classname,
# ovthresh=ovthresh[ii],
# use_07_metric=True)
# map95 += ap95
# umcomment to show p-r curve of each category
map = map/(len(classnames)-skippedClassCount)
mp = mp/(len(classnames)-skippedClassCount)
mr = mr/(len(classnames)-skippedClassCount)
#map95 = map95/(len(classnames)-skippedClassCount)/(len(ovthresh))
print('P:', mp)
print('R:', mr)
print('[email protected]:', map)
#print('[email protected]~0.95:', map95)
classaps = 100*np.array(classaps)
print('classaps: ', classaps)
def evaluation(detoutput, imageset, annopath, classnames):
"""
评估程序
@param detoutput: detect.py函数的结果存放输出路径
@param imageset: # val DOTA原图数据集图像路径
@param annopath: 'r/.../{:s}.txt' 原始val测试集的DOTAlabels路径
@param classnames: 测试集中的目标种类
"""
result_before_merge_path = str(detoutput + '/result_txt/result_before_merge')
result_merged_path = str(detoutput + '/result_txt/result_merged')
result_classname_path = str(detoutput + '/result_txt/result_classname')
imageset_name_file_path = str(detoutput + '/result_txt')
#判断是否有文件
if os.path.exists(result_merged_path):
print('原始存在文件,删除')
import shutil
shutil.rmtree(result_merged_path)
shutil.rmtree(result_classname_path)
shutil.rmtree(str(imageset_name_file_path +'/imgnamefile.txt'))
# 如果path是一个目录, 抛出 OSError错误。如果文件不错在或路径错误,也会抛出错误
# see demo for example
mergebypoly(
result_before_merge_path,
result_merged_path
)
print('检测结果已merge')
evaluation_trans(
result_merged_path,
result_classname_path
)
print('检测结果已按照类别分类')
image2txt(
imageset, # val原图数据集路径
imageset_name_file_path
)
print('校验数据集名称文件已生成')
detpath = str(result_classname_path + '/Task1_{:s}.txt') # 'r/.../Task1_{:s}.txt' 存放各类别结果文件txt的路径
annopath = annopath
imagesetfile = str(imageset_name_file_path +'/imgnamefile.txt') # 'r/.../imgnamefile.txt' 测试集图片名称txt
classaps = []
map, mp, mr,map95 = 0, 0, 0, 0
#ovthresh =[0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95]
skippedClassCount = 0
for classname in classnames:
print('classname:', classname)
detfile = detpath.format(classname)
if not (os.path.exists(detfile)):
skippedClassCount += 1
print('This class is not be detected in your dataset: {:s}'.format(classname))
continue
rec, prec, ap = voc_eval(detpath,
annopath,
imagesetfile,
classname,
ovthresh=0.5,
use_07_metric=True)
map = map + ap
mp = mp + prec[-1]#.mean()
mr = mr + rec[-1]#.mean()
# print('rec: ', rec, 'prec: ', prec, 'ap: ', ap)
# print('ap: ', ap)
classaps.append(ap)
#print('compute [email protected]~0.95')
# for ii in range(len(ovthresh)):
# _, _, ap95 = voc_eval(detpath,
# annopath,
# imagesetfile,
# classname,
# ovthresh=ovthresh[ii],
# use_07_metric=True)
# map95 += ap95
# umcomment to show p-r curve of each category
# plt.figure(figsize=(8,4))
# plt.xlabel('recall')
# plt.ylabel('precision')
# plt.plot(rec, prec)
# plt.show()
map = map/(len(classnames)-skippedClassCount)
mp = mp/(len(classnames)-skippedClassCount)
mr = mr/(len(classnames)-skippedClassCount)
#map95 = map95/(len(classnames)-skippedClassCount)/(len(ovthresh))
print('P:', mp)
print('R:', mr)
print('[email protected]:', map)
#print('[email protected]~0.95:', map95)
classaps = 100*np.array(classaps)
print('classaps: ', classaps)
if __name__ == '__main__':
'''
计算AP的流程:
1.detect.py检测一个文件夹的所有图片并把检测结果按照图片原始来源存入 原始图片名称.txt中: (rbox2txt函数)
txt中的内容格式: 目标所属图片名称_分割id 置信度 poly classname
2.ResultMerge.py将所有 原始图片名称.txt 进行merge和nms,并将结果存入到另一个文件夹的 原始图片名称.txt中:
txt中的内容格式: 目标所属图片名称 置信度 poly classname
3.写一个evaluation_trans.py将上个文件夹中的所有txt中的目标提取出来,按照目标类别分别存入 Task1_类别名.txt中:
txt中的内容格式: 目标所属原始图片名称 置信度 poly
4.写一个imgname2txt.py 将测试集的所有图片名称打印到namefile.txt中
'''
# For DOTA-v1.5
classnames = ['ship']
# For DOTA-v1.0
# classnames = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court',
# 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', ']
#
evaluation(
detoutput='/workspace/detectionlx',
imageset=r'/data_all/data/DOTA/Ship_dota_v1.5/val/images',
annopath=r'/data_all/data/DOTA/Ship_dota_v1.5/val/labelTxt-v1.5/{:s}.txt',
classnames=classnames
)
#evaluation_samll()
# draw_DOTA_image(imgsrcpath=r'/home/test/Persons/hukaixuan/yolov5_DOTA_OBB/DOTA_demo_view/row_images',
# imglabelspath=r'/home/test/Persons/hukaixuan/yolov5_DOTA_OBB/DOTA_demo_view/detection/result_txt/result_merged',
# dstpath=r'/home/test/Persons/hukaixuan/yolov5_DOTA_OBB/DOTA_demo_view/detection/merged_drawed',
# extractclassname=classnames,
# thickness=2
# )