-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model_4.py
76 lines (58 loc) · 3.97 KB
/
Model_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from sklearn.metrics import classification_report
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Sequential
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
trainDataGen = ImageDataGenerator(rotation_range = 5,
width_shift_range = 0.1,
height_shift_range = 0.1,
rescale = 1.0 / 255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = False,
fill_mode = 'nearest')
testDataGen = ImageDataGenerator(rescale = 1.0 / 255)
trainGenerator = trainDataGen.flow_from_directory(os.path.join('Split Dataset', 'Train'),
target_size = (32, 32),
batch_size = 32,
color_mode = 'grayscale',
classes = [str(Class) for Class in range(49)],
class_mode = 'categorical')
validationGenerator = testDataGen.flow_from_directory(os.path.join('Split Dataset', 'Validation'),
target_size = (32, 32),
batch_size = 32,
color_mode = 'grayscale',
classes = [str(Class) for Class in range(49)],
class_mode = 'categorical')
model = Sequential()
model.add(Conv2D(128, (3, 3), padding = 'same', activation = 'relu', kernel_initializer = 'he_uniform', input_shape = (32, 32, 1)))
model.add(Conv2D(128, (3, 3), padding = 'same', activation = 'relu', kernel_initializer = 'he_uniform'))
model.add(Conv2D(128, (3, 3), padding = 'same', activation = 'relu', kernel_initializer = 'he_uniform'))
model.add(MaxPooling2D((2, 2), strides = (2, 2), padding = 'same'))
model.add(Conv2D(64, (3, 3), padding = 'same', activation = 'relu', kernel_initializer = 'he_uniform'))
model.add(MaxPooling2D((2, 2), strides = (2, 2), padding = 'same'))
model.add(Flatten())
model.add(Dense(256, activation = 'relu', kernel_initializer = 'he_uniform'))
model.add(Dropout(0.2))
model.add(Dense(128, activation = 'relu', kernel_initializer = 'he_uniform'))
model.add(Dropout(0.1))
model.add(Dense(49, activation = 'softmax'))
model.compile(optimizer = Adam(learning_rate = 1e-3, decay = 1e-5), loss = 'categorical_crossentropy', metrics = ['accuracy'])
if not os.path.isdir('Model_4'):
os.mkdir('Model_4')
callbacks = [ReduceLROnPlateau(monitor = 'val_loss', factor = 0.1,
patience = 7, min_lr = 1e-5),
EarlyStopping(monitor = 'val_loss', patience = 9, # Patience should be larger than the one in ReduceLROnPlateau
min_delta = 1e-5),
CSVLogger(os.path.join('Model_4', 'training.log'), append = True),
ModelCheckpoint(os.path.join('Model_4', 'backup_last_model.hdf5')),
ModelCheckpoint(os.path.join('Model_4', 'best_val_acc.hdf5'), monitor = 'val_accuracy', mode = 'max', save_best_only = True),
ModelCheckpoint(os.path.join('Model_4', 'best_val_loss.hdf5'), monitor = 'val_loss', mode = 'min', save_best_only = True)]
model.fit(trainGenerator, epochs = 50, validation_data = validationGenerator, callbacks = callbacks)
model = load_model(os.path.join('Model_4', 'best_val_loss.hdf5'))
loss, acc = model.evaluate(validationGenerator)
print('Loss on Validation Data : ', loss)
print('Accuracy on Validation Data :', '{:.4%}'.format(acc))