forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory_planning_game.py
184 lines (159 loc) · 5.89 KB
/
memory_planning_game.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Memory & Planning Game environment."""
import string
import dm_env
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
class MemoryPlanningGame(dm_env.Environment):
"""Memory & Planning Game environment."""
ACTION_NAMES = ['Up', 'Down', 'Left', 'Right', 'Collect']
NUM_ACTIONS = len(ACTION_NAMES)
DIRECTIONS = [
(0, 1), # Up
(0, -1), # Down
(-1, 0), # Left
(1, 0), # Right
(0, 0), # Collect
]
def __init__(self,
maze_size=4,
max_episode_steps=100,
target_reward=1.,
per_step_reward=0.,
random_respawn=False,
seed=None):
"""The Memory & Planning Game environment.
Args:
maze_size: (int) size of the maze dimension.
max_episode_steps: (int) number of steps per episode.
target_reward: (float) reward value of the target.
per_step_reward: (float) reward/cost of taking a step.
random_respawn: (bool) whether the agent respawns in a random location
upon collecting the goal.
seed: (int or None) seed for random number generator.
"""
self._maze_size = maze_size
self._num_labels = maze_size * maze_size
# The graph itself is the same across episodes, but the node labels will be
# randomly sampled in each episode.
self._graph = nx.grid_2d_graph(
self._maze_size, self._maze_size, periodic=True)
self._max_episode_steps = max_episode_steps
self._target_reward = target_reward
self._per_step_reward = per_step_reward
self._random_respawn = random_respawn
self._rng = np.random.RandomState(seed)
def _one_hot(self, node):
one_hot_vector = np.zeros([self._num_labels], dtype=np.int32)
one_hot_vector[self._labels[node]] = 1
return one_hot_vector
def step(self, action):
# If previous step was the last step of an episode, reset.
if self._needs_reset:
return self.reset()
# Increment step count and check if it's the last step of the episode.
self._episode_steps += 1
if self._episode_steps >= self._max_episode_steps:
self._needs_reset = True
transition = dm_env.termination
else:
transition = dm_env.transition
# Recompute agent's position given the selected action.
direction = self.DIRECTIONS[action]
self._position = tuple(
(np.array(self._position) + np.array(direction)) % self._maze_size)
self._previous_action = self.ACTION_NAMES[action]
# Get reward if agent is over the goal location and the selected action is
# `collect`.
if self._position == self._goal and self.ACTION_NAMES[action] == 'Collect':
reward = self._target_reward
self._set_new_goal()
else:
reward = self._per_step_reward
self._episode_reward += reward
return transition(reward, self._observation())
def _observation(self):
return {
'position': np.array(self._one_hot(self.position), dtype=np.int32),
'goal': np.array(self._one_hot(self.goal), dtype=np.int32),
}
def observation_spec(self):
return {
'position': dm_env.specs.Array(
shape=(self._num_labels,), dtype=np.int32, name='position'),
'goal': dm_env.specs.Array(
shape=(self._num_labels,), dtype=np.int32, name='goal'),
}
def action_spec(self):
return dm_env.specs.DiscreteArray(self.NUM_ACTIONS)
def take_random_action(self):
return self.step(self._rng.randint(self.NUM_ACTIONS))
def reset(self):
self._previous_action = ''
self._episode_reward = 0.
self._episode_steps = 0
self._needs_reset = False
random_labels = self._rng.permutation(self._num_labels)
self._labels = {n: random_labels[i]
for i, n in enumerate(self._graph.nodes())}
self._respawn()
self._set_new_goal()
return dm_env.restart(self._observation())
def _respawn(self):
random_idx = self._rng.randint(self._num_labels)
self._position = list(self._graph.nodes())[random_idx]
def _set_new_goal(self):
if self._random_respawn:
self._respawn()
goal = self._position
while goal == self._position:
random_idx = self._rng.randint(self._num_labels)
goal = list(self._graph.nodes())[random_idx]
self._goal = goal
@property
def position(self):
return self._position
@property
def goal(self):
return self._goal
@property
def previous_action(self):
return self._previous_action
@property
def episode_reward(self):
return self._episode_reward
def draw_maze(self, ax=None):
if ax is None:
plt.figure()
ax = plt.gca()
node_positions = {(x, y): (x, y) for x, y in self._graph.nodes()}
letters = string.ascii_uppercase + string.ascii_lowercase
labels = {n: letters[self._labels[n]] for n in self._graph.nodes()}
node_list = list(self._graph.nodes())
colors = []
for n in node_list:
if n == self.position:
colors.append('lightblue')
elif n == self.goal:
colors.append('lightgreen')
else:
colors.append('pink')
nx.draw(self._graph, pos=node_positions, nodelist=node_list, ax=ax,
node_color=colors, with_labels=True, node_size=200, labels=labels)
ax.set_title('{}\nEpisode reward={:.1f}'.format(
self.previous_action, self.episode_reward))
ax.margins(.1)
return plt.gcf(), ax