From 410de7f19ed15dd8962f493c509f36f8c986f975 Mon Sep 17 00:00:00 2001 From: San <99511815+sanowl@users.noreply.github.com> Date: Thu, 4 Apr 2024 10:49:26 +0300 Subject: [PATCH] Update embeddings.rs --- src/models/embeddings.rs | 50 ++++++++++++++++++++++++++++++++++++---- 1 file changed, 46 insertions(+), 4 deletions(-) diff --git a/src/models/embeddings.rs b/src/models/embeddings.rs index 32eba57..b45691f 100644 --- a/src/models/embeddings.rs +++ b/src/models/embeddings.rs @@ -1,5 +1,6 @@ use tch::{nn, nn::Module, Device, Kind, Tensor}; +/// TimestepEmbedding module for embedding timesteps. #[derive(Debug)] pub struct TimestepEmbedding { linear_1: nn::Linear, @@ -7,7 +8,17 @@ pub struct TimestepEmbedding { } impl TimestepEmbedding { - // act_fn: "silu" + /// Creates a new TimestepEmbedding module. + /// + /// # Arguments + /// + /// * `vs` - The variable store path. + /// * `channel` - The number of input channels. + /// * `time_embed_dim` - The dimensionality of the time embedding. + /// + /// # Returns + /// + /// A new TimestepEmbedding instance. pub fn new(vs: nn::Path, channel: i64, time_embed_dim: i64) -> Self { let linear_cfg = Default::default(); let linear_1 = nn::linear(&vs / "linear_1", channel, time_embed_dim, linear_cfg); @@ -17,11 +28,21 @@ impl TimestepEmbedding { } impl Module for TimestepEmbedding { + /// Performs the forward pass of the TimestepEmbedding module. + /// + /// # Arguments + /// + /// * `xs` - The input tensor. + /// + /// # Returns + /// + /// The output tensor after applying the timestep embedding. fn forward(&self, xs: &Tensor) -> Tensor { xs.apply(&self.linear_1).silu().apply(&self.linear_2) } } +/// Timesteps module for generating timestep embeddings. #[derive(Debug)] pub struct Timesteps { num_channels: i64, @@ -31,6 +52,18 @@ pub struct Timesteps { } impl Timesteps { + /// Creates a new Timesteps module. + /// + /// # Arguments + /// + /// * `num_channels` - The number of channels in the timestep embedding. + /// * `flip_sin_to_cos` - Whether to flip sin and cos in the embedding. + /// * `downscale_freq_shift` - The frequency shift for downscaling. + /// * `device` - The device to use for computations. + /// + /// # Returns + /// + /// A new Timesteps instance. pub fn new( num_channels: i64, flip_sin_to_cos: bool, @@ -42,18 +75,27 @@ impl Timesteps { } impl Module for Timesteps { + /// Performs the forward pass of the Timesteps module. + /// + /// # Arguments + /// + /// * `xs` - The input tensor containing the timesteps. + /// + /// # Returns + /// + /// The output tensor representing the timestep embeddings. fn forward(&self, xs: &Tensor) -> Tensor { let half_dim = self.num_channels / 2; let exponent = Tensor::arange(half_dim, (Kind::Float, self.device)) * -f64::ln(10000.); let exponent = exponent / (half_dim as f64 - self.downscale_freq_shift); - let emb = exponent.exp(); - // emb = timesteps[:, None].float() * emb[None, :] - let emb = xs.unsqueeze(-1) * emb.unsqueeze(0); + let emb = exponent.exp() * xs.unsqueeze(-1); + let emb = if self.flip_sin_to_cos { Tensor::cat(&[emb.cos(), emb.sin()], -1) } else { Tensor::cat(&[emb.sin(), emb.cos()], -1) }; + if self.num_channels % 2 == 1 { emb.pad([0, 1, 0, 0], "constant", None) } else {