-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo.py
221 lines (195 loc) · 8.14 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import cv2
import glob
import logging
import traceback
# import matplotlib
# matplotlib.use('Agg')
import matplotlib.pyplot as plt
from PIL import ImageFile
import numpy as np
import argparse
import sys
import tritonclient.grpc as grpcclient
from tritonclient.utils import InferenceServerException
from OPIXray_grpc_image_client import *
#from OPIXray.DOAM.detection_draw import draw_with_coordinate_dynamic
# different color
# COLOR_CONFIG = {
# 'Folding_Knife': (0, 0, 0)
# , 'Straight_Knife': (0,100,0)
# , 'Scissor': (0,0,128)
# , 'Utility_Knife': (255, 0, 255)
# , 'Multi-tool_Knife': (255, 0, 0),
# }
# Purple
# COLOR_CONFIG = {
# 'Folding_Knife': (72,61,139)
# , 'Straight_Knife': (72,61,139)
# , 'Scissor': (72,61,139)
# , 'Utility_Knife': (72,61,139)
# , 'Multi-tool_Knife': (72,61,139),
# }
# pink
COLOR_CONFIG = {
'Folding_Knife': (255,0,255)
, 'Straight_Knife': (255,0,255)
, 'Scissor': (255,0,255)
, 'Utility_Knife': (255,0,255)
, 'Multi-tool_Knife': (255,0,255),
}
# Red
# COLOR_CONFIG = {
# 'Folding_Knife': (255,0,0)
# , 'Straight_Knife': (255,0,0)
# , 'Scissor': (255,0,0)
# , 'Utility_Knife': (255,0,0)
# , 'Multi-tool_Knife': (255,0,0),
# }
def draw_with_coordinate_dynamic(class_correct_scores: dict, class_coordinate_dict: dict, og_im,
color_config=COLOR_CONFIG):
og_im_copy = og_im.copy()
for cls, scores in class_correct_scores.items():
if scores:
for index, score in enumerate(scores):
coordinate = tuple(map(int, class_coordinate_dict[cls][index]))
first_point = (coordinate[0], coordinate[1])
last_point = (coordinate[2], coordinate[3])
cv2.rectangle(og_im, first_point, last_point, color_config[cls], 2)
# 在矩形框上方绘制该框的名称
text_point = ((coordinate[0], coordinate[1] - 4 if coordinate[1] - 4 > 0 else coordinate[1]))
cv2.putText(og_im, "{0},score:{1}".format(cls, "%.2f" % score), text_point,
cv2.FONT_HERSHEY_COMPLEX,
fontScale=1.5, color=color_config[cls],
thickness=3)
return og_im_copy, og_im
def plot_result_dynamic(detections, og_ims, h=954, w=1225, classes=OPIXray_CLASSES):
fig, axes = plt.subplots(1, 2, figsize=(12,12), dpi=200)
plt.ion()
for i in range(len(detections)):
all_boxes = [[[] for _ in range(1)]
for _ in range(len(classes) + 1)]
class_correct_scores, class_coordinate_dict = result_struct(detections[i], h, w, all_boxes=all_boxes,
OPIXray_CLASSES=OPIXray_CLASSES)
# print(class_coordinate_dict)
# draw_with_coordinate(class_correct_scores, class_coordinate_dict,og_im)
image1, image2 = draw_with_coordinate_dynamic(class_correct_scores, class_coordinate_dict, og_ims[i])
if i == 0:
am0 = axes[0].imshow(image1)
axes[0].set_title("Xray Image (1)",fontsize=20)
axes[0].axis('off')
am1 = axes[1].imshow(image2)
axes[1].set_title("Result (1)",fontsize=20)
axes[1].axis('off')
else:
am0.set_data(image1)
am1.set_data(image2)
axes[0].set_title(f"Xray Image ({i+1})",fontsize=20)
axes[1].set_title(f"Result ({i+1})",fontsize=20)
fig.canvas.flush_events()
plt.pause(2)
plt.ioff()
if __name__ == '__main__':
# python demo.py -u 192.168.8.187:230 -m opi
parser = argparse.ArgumentParser()
parser.add_argument('-v',
'--verbose',
action="store_true",
required=False,
default=False,
help='Enable verbose output')
parser.add_argument('-m',
'--model-name',
type=str,
required=True,
help='Name of model')
parser.add_argument('-u',
'--url',
type=str,
required=False,
default='localhost:8001',
help='Inference server URL. Default is localhost:8001.')
parser.add_argument('-t',
'--client-timeout',
type=float,
required=False,
default=None,
help='Client timeout in seconds. Default is None.')
parser.add_argument('image_filename',
type=str,
nargs='?',
default=None,
help='Input image / Input folder.')
FLAGS = parser.parse_args()
try:
triton_client = grpcclient.InferenceServerClient(url=FLAGS.url,
verbose=FLAGS.verbose)
except Exception as e:
print("context creation failed: " + str(e))
sys.exit()
model_name = FLAGS.model_name
# Infer
# inputs = []
# outputs = []
# inputs.append(grpcclient.InferInput('modelInput', [1, 3, 300, 300], "FP32"))
# inputs.append(grpcclient.InferInput('INPUT1', [1, 16], "INT32"))
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
# input0_data = np.arange(start=0, stop=16, dtype=np.int32)
# input0_data = np.expand_dims(input0_data, axis=0)
image_data, og_ims = file_paser(FLAGS)
results = []
# Initialize the data
for i in range(0,len(image_data)):
inputs = []
outputs = []
inputs.append(grpcclient.InferInput('modelInput', [1, 3, 300, 300], "FP32"))
inputs[0].set_data_from_numpy(image_data[i])
outputs.append(grpcclient.InferRequestedOutput('modelOutput'))
outputs.append(grpcclient.InferRequestedOutput('407'))
outputs.append(grpcclient.InferRequestedOutput('408'))
# Define the callback function. Note the last two parameters should be
# result and error. InferenceServerClient would povide the results of an
# inference as grpcclient.InferResult in result. For successful
# inference, error will be None, otherwise it will be an object of
# tritonclientutils.InferenceServerException holding the error details
def callback(user_data, result, error):
if error:
user_data.append(error)
else:
user_data.append(result)
# list to hold the results of inference.
user_data = []
# Inference call
triton_client.async_infer(model_name=model_name,
inputs=inputs,
callback=partial(callback, user_data),
outputs=outputs,
client_timeout=FLAGS.client_timeout)
start1 = time.time()
# Wait until the results are available in user_data
time_out = 10
while ((len(user_data) == 0) and time_out > 0):
time_out = time_out - .1
time.sleep(.1)
if ((len(user_data) == 1)):
results.append(user_data[0])
print('results length:', (len(results)))
output_result = []
for i in range(0,len(results)):
# Display and validate the available results
# Check for the errors
if type(results[i]) == InferenceServerException:
print(results[i])
sys.exit(1)
output0_data = torch.from_numpy(results[i].as_numpy('modelOutput'))
output1_data = torch.from_numpy(results[i].as_numpy('407'))
output2_data = torch.from_numpy(results[i].as_numpy('408'))
print(output0_data.shape, output1_data.shape, output2_data.shape)
# exit(0)
detect = Detect(6, 0, 200, 0.01, 0.45)
result = detect.forward(output0_data, output1_data, output2_data).data
output_result.append(result)
print(time.time() - start1, "s")
plot_result_dynamic(output_result, og_ims=og_ims)
print("PASS: Async infer")