-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
385 lines (351 loc) · 19.4 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import argparse
import time
from pathlib import Path
import os
import shutil
import sys
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
from utils.myutils import *
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
def detect(save_img=False):
weights, view_img, save_txt, imgsz, trace = opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
object, ground_truth, step, dist, thres, project = opt.object, opt.object, opt.step, opt.dist, opt.thres, opt.project
classes = [32, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 64, 65, 67, 74, 76]
name = object
ground_truth = object
# prepare the sources
filePath = '/home/shixu/My_env/Dataset/object/' + object
name_list = os.listdir(filePath)
name_list.sort()
source_list = []
for i in name_list:
i = filePath + '/' + i
source_list.append(i)
# Directories
save_dir = Path(project) / name # evals/object
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
(save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# ============================================= initialize evaluation results===================================== #
instance = 0
seq_length = 75
sum_seq = [0] * seq_length # saving to SP.txt
sum_seq_acc = [] # saving to SP_acc.txt
sum_inst = [] # saving to IP.txt
sum_grasp = [] # saving to GP.txt
sum_NPC = [] # saving to NPC.txt
# ================================================== Hyper-parameters ============================================ #
step = step # 累积投票的时候,往前看几步
if dist:
Box_thres = dist2thres(dist) # Thres differ from each class
print('Using distance thresholds, dist=', dist)
if thres:
Box_thres = [thres for idx in range(80)] # All class thres are the same
print('Using regular thresholds, thres=', thres)
for source in source_list:
not_trigger = 1
# For every video, run the process
vid_name = get_vid_name(source)
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
# ===============================initialize evaluation results for each time/source=========================== #
# Sequence folder
eval_seq = []
seq_dir = save_dir / 'seq'
seq_dir.mkdir(parents=True, exist_ok=True)
seq_path = str(seq_dir / str('eval_seq' + vid_name + '.txt'))
(seq_dir / 'acc').mkdir(parents=True, exist_ok=True)
seq_acc_path = str(seq_dir / 'acc' / str('eval_seq_acc' + vid_name + '.txt'))
# Instance folder
eval_inst = 0
inst_dir = save_dir / 'inst'
inst_dir.mkdir(parents=True, exist_ok=True)
inst_path = str(inst_dir / str('eval_inst' + vid_name + '.txt'))
# Grasp folder
eval_grasp = []
grasp_dir = save_dir / 'grasp'
grasp_dir.mkdir(parents=True, exist_ok=True)
grasp_path = str(grasp_dir / str('eval_grasp' + vid_name + '.txt'))
# NPC folder
NPC = 0
last_pred = 'None'
npc_dir = save_dir / 'npc'
npc_dir.mkdir(parents=True, exist_ok=True)
npc_path = str(npc_dir / str('npc' + vid_name + '.txt'))
# =============================== information logs ========================================== #
# stream_log:记录视频流每一帧累积信息的
# class_score_lod: 80×n维的列表,表示80个类别的得分记录
stream_log = []
class_score_log = np.zeros((80, 1))
new_frame = np.zeros(80)
frame_idx = 0
trigger_flag = [False, "None"]
for path, im, im0s, vid_cap in dataset:
# 分数记录
if frame_idx >= 1:
class_score_log = np.column_stack((class_score_log, new_frame))
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
if im.ndimension() == 3:
im = im.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(im, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, im, im0s)
# ===================================至此,推理过程已经结束================================= #
# 记录每张图片所有目标结果的列表
frame_log = []
# 记录图片里每个目标得分的列表
score_list = []
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
im1 = im0
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
# 将xyxy(左上角 + 右下角)格式转换为xywh(中心的 + 宽高)格式 并除以gn(whwh)做归一化 转为list再保存
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
coffset = get_centeroffset(xyxy, gn, normalize=True) # 获得每个目标的中心偏移量coffset
# coffset = get_centeroffset_2version(xywh, normalize=True)
thres = Box_thres[int(cls)]
box_rate = get_box_thres_rate(xywh, thres) # 获取阈值比
box_size = get_box_size((xywh)) # 只获得框大小
score = count_score(box_rate, coffset) # 计分score
# 记录当前这个种类的特征
frame_log.append(
{"cls": names[int(cls)], "cls_num": int(cls), "conf": conf, "xyxy": xyxy, "xywh": xywh,
"coffset": coffset,
"box_rate": box_rate, "box_size": box_size, "score": score})
score_list.append(score) # score_list每帧都更新
# 每次直接对应int(cls)的那个class_score_log进行append操作
if score >= class_score_log[int(cls), :][frame_idx]:
class_score_log[int(cls), :][frame_idx] = score
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
# =====================================单个object检测结束================================= #
# ==================================TargetChoosing===================================== #
# Not voting
# target_idx = score_list.index(max(score_list)) # 这一步可以修改成voting之类的方式
# Voting
if frame_idx < step:
target_idx = score_list.index(max(score_list)) # 注意这里是因为之前保持了score_list和frame_log的目标索引是一样的
else:
target_idx = vote_score(frame_log, class_score_log, step=step) # 连续step帧累积投票
# 归一法计算概率
prob_list = norm_prob(score_list)
prob = prob_list[target_idx]
target = frame_log[target_idx]
# 这里是判断是否预测对了target
eval_seq = save_eval_seq(eval_seq, target["cls"], ground_truth, prob)
if last_pred != target["cls"]: # Checking number of prediction changes
NPC += 1
last_pred = target["cls"]
target_xyxy = target["xyxy"]
im1 = info_on_img(im0, gn, zoom=[0.48, 0.7], label="Box_x_loc: " + str(round(target["xywh"][0], 3)))
im1 = info_on_img(im1, gn, zoom=[0.48, 0.75], label="Box_y_loc: " + str(round(target["xywh"][1], 3)))
im1 = info_on_img(im1, gn, zoom=[0.48, 0.8], label="Box_size: " + str(round(target["box_size"], 3)))
im1 = info_on_img(im1, gn, zoom=[0.48, 0.85], label="Box_rate: " + str(round(target["box_rate"], 3)))
im1 = info_on_img(im1, gn, zoom=[0.48, 0.9],
label="Score: " + str(round(target["score"].item(), 3)))
im1 = plot_target_box(target_xyxy, im1, line_thickness=2)
trigger_flag = check_trigger(target["box_rate"], target["xywh"], target["cls"], trigger_flag)
if trigger_flag[0]:
# 判断是否在grasping
im1 = text_on_img(im1, gn, zoom=[0.02, 0.95], label="Grasping " + trigger_flag[1])
if not_trigger:
eval_inst = save_eval_instance(eval_inst, target["cls"], ground_truth)
not_trigger = 0
else:
im1 = text_on_img(im1, gn, zoom=[0.02, 0.95], label="Targeting: " + target["cls"])
stream_log.append(frame_log)
else:
# 如果没有预测出目标
eval_seq = save_eval_seq(eval_seq, "None", ground_truth, float(0))
trigger_flag = check_trigger_null(trigger_flag)
if trigger_flag[0]:
im1 = text_on_img(im1, gn, zoom=[0.02, 0.95], label="Grasping " + trigger_flag[1])
else:
im1 = text_on_img(im1, gn, zoom=[0.02, 0.95], label="No Target")
stream_log.append(["None"])
im1 = text_on_img(im1, gn, zoom=[0.02, 0.1], color=[0, 0, 255], label="Frame " + str(frame_idx))
# 记录当前帧Trigger_flag的状态
im1 = text_on_img(im1, gn, zoom=[0.02, 0.2], color=[0, 0, 255],
label="Flag on" if trigger_flag[0] else "Flag off")
if not not_trigger:
eval_grasp = save_eval_grasp(eval_grasp, trigger_flag, ground_truth)
eval_grasp = check_gp(eval_grasp)
# Stream results
if view_img:
cv2.imshow(str(p), im1)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im1)
print(f" The image with the result is saved in: {save_path}")
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im1.shape[1], im1.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im1)
frame_idx += 1
# 至此结束当前帧
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
#print(f"Results saved to {save_dir}{s}")
# 打印预测的总时间
print(frame_idx)
print(f'Done. ({time.time() - t0:.3f}s)')
# ============================ saving evaluation results for a single source time============================= #
# 保存seq评估,并保持长度一致
equal_eval_seq = equal_len(eval_seq, seq_length)
sum_seq = list_sum(sum_seq, equal_eval_seq)
save_file_continue(seq_path, equal_eval_seq)
# Saving accuracy of the sequence
accuracy = seq_accuracy(equal_eval_seq)
sum_seq_acc.append(accuracy)
save_file_discrete(seq_acc_path, accuracy)
# Saving instance evaluation
sum_inst.append(eval_inst)
save_file_discrete(inst_path, eval_inst)
# Saving grasping evaluation
if not len(eval_grasp):
eval_grasp.append(0)
sum_grasp.append(eval_grasp[-1])
save_file_continue(grasp_path, eval_grasp)
# Saving NPC
save_file_discrete(npc_path, NPC)
sum_NPC.append(NPC)
# 把所有class都保存到file
# save_score_to_file(save_dir, class_score_log)
instance += 1
# ============================================ saving evaluation results========================================== #
# Calculating SP
mean_seq = list_mean(sum_seq, len(source_list))
save_file_continue(save_dir / 'SP.txt', mean_seq)
# Calculating SP accuracy
mean_acc = sum(sum_seq_acc) / len(source_list)
sum_seq_acc.append(mean_acc)
save_file_continue(save_dir / 'SP_acc.txt', sum_seq_acc)
# Calculating IP mean
mean_inst = sum(sum_inst) / len(sum_inst)
sum_inst.append(mean_inst)
save_file_continue(save_dir / 'IP.txt', sum_inst)
# Calculating GP mean
mean_grasp = sum(sum_grasp) / len(sum_grasp)
sum_grasp.append(mean_grasp)
save_file_continue(save_dir / 'GP.txt', sum_grasp)
# Calculating NPC mean
mean_NPC = sum(sum_NPC) / len(sum_NPC)
sum_NPC.append(mean_NPC)
save_file_continue(save_dir / 'NPC.txt', sum_NPC)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/yolov7x.pt', help='model.pt path(s)')
parser.add_argument('--object', type=str, default='apple', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'evals', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
parser.add_argument('--step', type=int, default=1, help='vote step')
parser.add_argument('--dist', type=int, help='distance and thres realtionship')
parser.add_argument('--thres', type=float, help='regular threshold')
opt = parser.parse_args()
print(opt)
#check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov7.pt']:
detect()
strip_optimizer(opt.weights)
else:
detect()