-
Notifications
You must be signed in to change notification settings - Fork 0
/
etl.py
167 lines (117 loc) · 6.01 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, dayofweek, monotonically_increasing_id
from pyspark.sql.types import StructType as R, StructField as Fld, DoubleType as Dbl, StringType as Str, IntegerType as Int, DateType as Date
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
'''Creates Spark session.
Returns currently running Spark Session, or creates a new session and returns it.
Parameters:
None
Returns:
SparkSession: spark
'''
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
'''Processes song data.
Creates songs_table and artists_table using song data.
Parameters:
spark (SparkSession): Current Spark session
input_data (str): String of directory of song_data and log_data
output_data (str): String of directory where output data is written
Returns:
None
'''
print('process_song_data starting (0/2)')
# get filepath to song data file
song_data = os.path.join(input_data, 'song_data/*/*/*/*.json')
# read song data file
df = spark.read.json(song_data)
print('Creating songs_table (1/2)')
# extract columns to create songs table
songs_table = df.select('song_id', 'title', 'artist_id', 'year', 'duration').drop_duplicates()
# write songs table to parquet files partitioned by year and artist
songs_table.write.partitionBy("year", "artist_id").mode('overwrite').parquet(os.path.join(output_data, 'songs.parquet'))
print('Creating artists_table (2/2)')
# extract columns to create artists table
artists_table = df.select('artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude').drop_duplicates()
# write artists table to parquet files
artists_table.write.mode('overwrite').parquet(os.path.join(output_data, 'artists.parquet'))
print('process_song_data completed')
def process_log_data(spark, input_data, output_data):
'''Processes log data.
Creates users_table and time_table using log data. The song and log datasets are joined to create the songplays_table.
Parameters:
spark (SparkSession): Current Spark session
input_data (str): String of directory of song_data and log_data
output_data (str): String of directory where output data is written
Returns:
None
'''
print('process_log_data starting (0/3)')
# get filepath to log data file
log_data = os.path.join(input_data, 'log_data/*/*/*.json')
# read log data file
df = spark.read.json(log_data)
# filter by actions for song plays
df = df.filter(df.page == 'NextSong')
print('Creating users_table (1/3)')
# extract columns for users table
users_table = df.select('userId', 'firstName', 'lastName', 'gender', 'level').drop_duplicates()
# write users table to parquet files
users_table.write.mode('overwrite').parquet(os.path.join(output_data, 'users.parquet'))
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: str(int(x)/1000))
df = df.withColumn("timestamp", get_timestamp(col('ts')))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: datetime.fromtimestamp(int(x)/1000))
df = df.withColumn("datetime", get_datetime(col('ts')))
print('Creating time_table (2/3)')
# extract columns to create time table
time_table = df.select(col('datetime').alias('start_time'),
hour(col('datetime')).alias('hour'),
dayofmonth(col('datetime')).alias('day'),
weekofyear(col('datetime')).alias('week'),
month(col('datetime')).alias('month'),
year(col('datetime')).alias('year'),
dayofweek(col('datetime')).alias('weekday'))
# write time table to parquet files partitioned by year and month
time_table.write.partitionBy("year", "month").mode('overwrite').parquet(os.path.join(output_data, 'time.parquet'))
# read in song data to use for songplays table
song_df = spark.read.json(os.path.join(input_data, 'song_data/*/*/*/*.json'))
print('Creating songplays_table (3/3)')
# extract columns from joined song and log datasets to create songplays table
songplays_table = df.join(song_df, (df.song == song_df.title) & (df.artist == song_df.artist_name) & (df.length == song_df.duration), 'left_outer') \
.select(
df.timestamp,
col("userId").alias('user_id'),
df.level,
song_df.song_id,
song_df.artist_id,
col("sessionId").alias("session_id"),
df.location,
col("useragent").alias("user_agent"),
year('datetime').alias('year'),
month('datetime').alias('month')) \
.withColumn('songplay_id', monotonically_increasing_id())
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy("year", "month").mode('overwrite').parquet(os.path.join(output_data, 'songplays.parquet'))
print('process_log_data completed')
def main():
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
output_data = "output"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
if __name__ == "__main__":
main()