diff --git a/src/03b.ipynb b/src/03b.ipynb index c6a6176..3e21b76 100644 --- a/src/03b.ipynb +++ b/src/03b.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "id": "de4b4a56", "metadata": {}, "outputs": [], @@ -52,7 +52,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "id": "b53e3b3f", "metadata": {}, "outputs": [], @@ -70,10 +70,85 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 56, "id": "046f5901", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeLoan AmountDefault
0308No
12210No
23312No
32820No
42332No
\n", + "
" + ], + "text/plain": [ + " Income Loan Amount Default\n", + "0 30 8 No\n", + "1 22 10 No\n", + "2 33 12 No\n", + "3 28 20 No\n", + "4 23 32 No" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "loan.head()" ] @@ -108,10 +183,27 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 57, "id": "67de73e2", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 30 entries, 0 to 29\n", + "Data columns (total 3 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Income 30 non-null int64 \n", + " 1 Loan Amount 30 non-null int64 \n", + " 2 Default 30 non-null object\n", + "dtypes: int64(2), object(1)\n", + "memory usage: 848.0+ bytes\n" + ] + } + ], "source": [ "loan.info()" ] @@ -136,10 +228,97 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 58, "id": "acdf6ca5", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IncomeLoan Amount
count30.00000030.000000
mean20.96666754.233333
std6.19501128.231412
min12.0000008.000000
25%16.25000032.000000
50%20.50000054.500000
75%24.75000071.750000
max34.000000110.000000
\n", + "
" + ], + "text/plain": [ + " Income Loan Amount\n", + "count 30.000000 30.000000\n", + "mean 20.966667 54.233333\n", + "std 6.195011 28.231412\n", + "min 12.000000 8.000000\n", + "25% 16.250000 32.000000\n", + "50% 20.500000 54.500000\n", + "75% 24.750000 71.750000\n", + "max 34.000000 110.000000" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "loan.describe()" ] @@ -167,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 59, "id": "7239372b", "metadata": {}, "outputs": [], @@ -186,10 +365,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "id": "9308d55a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAG0CAYAAAAozc0BAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi60lEQVR4nO3de1TUdf7H8degCBgypMbFHNBUvIKldjZ0l5+pqbhRKtt9U8rW7KC7am7GWm3aMeyembFRprbFVqbiliEpCa6mlpy8lYeUVGxF7LIOSoIK8/uj05xQURwHvvPB5+OcOTrf+c6X93gO8uQ7n5mxuVwulwAAAAzkZ/UAAAAAniJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEsDZmMjAzFxcUpJCREISEhio+PV05Ojvv2gQMHymaz1bpMmDDBwokBAIAvsVn5WUsffPCBmjVrpi5dusjlcmnx4sV65pln9MUXX6hnz54aOHCgYmJiNGvWLPd9WrZsqZCQkHp/jZqaGh08eFCtWrWSzWZriIcBAAC8zOVy6ejRo2rXrp38/Oo+79K8EWc6Q1JSUq3rs2fPVkZGhjZt2qSePXtK+jlcIiIiPP4aBw8elMPhuKg5AQCANQ4cOKD27dvXebulIfNr1dXVWrJkiSoqKhQfH+/e/vbbb+utt95SRESEkpKS9Oijj6ply5Z1HqeqqkpVVVXu67+ccDpw4MAFnckBAADWKS8vl8PhUKtWrc65n+Uhs2PHDsXHx6uyslLBwcFavny5evToIUm68847FR0drXbt2mn79u2aPn26ioqKtGzZsjqPl56erpkzZ56x/Zd1OAAAwBznWxZi6RoZSTpx4oRKSkrkdDr1/vvv6/XXX1dBQYE7Zn7tk08+0eDBg7Vnzx516tTprMc7/YzML0XndDoJGQAADFFeXi673X7en9+Wh8zphgwZok6dOunVV18947aKigoFBwdr1apVGjZsWL2OV99/CAAA4Dvq+/Pb595HpqamptYZlV/bunWrJCkyMrIRJwIAAL7K0jUyaWlpSkxMVFRUlI4ePaqsrCzl5+crNzdXxcXFysrK0ogRI9SmTRtt375dU6ZMUUJCguLi4qwcGwAA+AhLQ+bw4cMaM2aMSktLZbfbFRcXp9zcXN1www06cOCA1qxZoxdffFEVFRVyOBxKTk7WI488YuXIAADAh/jcGhlvY40MAADmMXaNDAAAQH0RMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwluWffg3fUFlZqZKSEqvHwGmioqIUGBho9RgA4LMIGUiSSkpKNH78eKvHwGkyMzMVExNj9RgA4LMIGUj6+Tf/zMxMq8e4aPv379fs2bM1Y8YMRUdHWz3ORYuKirJ6BADwaYQMJEmBgYFN6jf/6OjoJvV4AABnx2JfAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABjL0pDJyMhQXFycQkJCFBISovj4eOXk5Lhvr6ysVGpqqtq0aaPg4GAlJyerrKzMwokBAIAvsTRk2rdvrzlz5qiwsFBbtmzRoEGDdPPNN+vLL7+UJE2ZMkUffPCBlixZooKCAh08eFCjR4+2cmQAAOBDmlv5xZOSkmpdnz17tjIyMrRp0ya1b99eCxYsUFZWlgYNGiRJWrhwobp3765Nmzbpuuuus2JkAADgQ3xmjUx1dbXeeecdVVRUKD4+XoWFhTp58qSGDBni3qdbt26KiorSxo0b6zxOVVWVysvLa10AAEDTZHnI7NixQ8HBwQoICNCECRO0fPly9ejRQ4cOHVKLFi0UGhpaa//w8HAdOnSozuOlp6fLbre7Lw6Ho4EfAQAAsIrlIdO1a1dt3bpVmzdv1gMPPKCxY8fqq6++8vh4aWlpcjqd7suBAwe8OC0AAPAllq6RkaQWLVqoc+fOkqS+ffvq888/19y5c3XbbbfpxIkTOnLkSK2zMmVlZYqIiKjzeAEBAQoICGjosQEAgA+w/IzM6WpqalRVVaW+ffvK399feXl57tuKiopUUlKi+Ph4CycEAAC+wtIzMmlpaUpMTFRUVJSOHj2qrKws5efnKzc3V3a7XePGjdPUqVPVunVrhYSEaNKkSYqPj+cVSwAAQJLFIXP48GGNGTNGpaWlstvtiouLU25urm644QZJ0gsvvCA/Pz8lJyerqqpKw4YN0yuvvGLlyAAAwIdYGjILFiw45+2BgYGaP3++5s+f30gTAQAAk1i+2LepKCsrk9PptHqMS97+/ftr/Qlr2e12hYeHWz0GgCbM5nK5XFYP0ZDKy8tlt9vldDoVEhLSIF+jrKxMf7x7jE6eqGqQ4wOm8m8RoLf++SYxA+CC1ffnN2dkvMDpdOrkiSodv+r/VBNot3ocwCf4VTqlbwrkdDoJGQANhpDxoppAu2oua2v1GAAAXDJ87n1kAAAA6ouQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABirudUDNCV+x49YPQLgM/h+ANAYCBkvCtq7zuoRAAC4pBAyXnS8Y4JqgkKtHgPwCX7HjxD3ABocIeNFNUGhqrmsrdVjAABwyWCxLwAAMJalIZOenq5rr71WrVq1UlhYmEaOHKmioqJa+wwcOFA2m63WZcKECRZNDAAAfImlIVNQUKDU1FRt2rRJq1ev1smTJzV06FBVVFTU2u9Pf/qTSktL3Zenn37aookBAIAvsXSNzKpVq2pdX7RokcLCwlRYWKiEhAT39pYtWyoiIqJex6yqqlJVVZX7enl5uXeGBQAAPsen1sg4nU5JUuvWrWttf/vtt9W2bVv16tVLaWlp+umnn+o8Rnp6uux2u/vicDgadGYAAGAdn3nVUk1NjSZPnqwBAwaoV69e7u133nmnoqOj1a5dO23fvl3Tp09XUVGRli1bdtbjpKWlaerUqe7r5eXlxAwAAE2Uz4RMamqqdu7cqfXr19faPn78ePffY2NjFRkZqcGDB6u4uFidOnU64zgBAQEKCAho8HkBAID1fOKppYkTJ+rDDz/U2rVr1b59+3Pu+5vf/EaStGfPnsYYDQAA+DBLz8i4XC5NmjRJy5cvV35+vjp27Hje+2zdulWSFBkZ2cDTAQAAX2dpyKSmpiorK0srVqxQq1atdOjQIUmS3W5XUFCQiouLlZWVpREjRqhNmzbavn27pkyZooSEBMXFxVk5OgAA8AGWhkxGRoakn9/07tcWLlyolJQUtWjRQmvWrNGLL76oiooKORwOJScn65FHHrFgWgAA4Gssf2rpXBwOhwoKChppGgAAYBqfWOwLAADgiYsKmRMnTqioqEinTp3y1jwAAAD15lHI/PTTTxo3bpxatmypnj17qqSkRJI0adIkzZkzx6sDAgAA1MWjkElLS9O2bduUn5+vwMBA9/YhQ4bo3Xff9dpwAAAA5+LRYt/s7Gy9++67uu6662Sz2dzbe/bsqeLiYq8NBwAAcC4enZH57rvvFBYWdsb2ioqKWmEDAADQkDwKmX79+mnlypXu67/Ey+uvv674+HjvTAYAAHAeHj219OSTTyoxMVFfffWVTp06pblz5+qrr77Sp59+yvu+AICPqaysdL8oA74jKiqq1jpTeMajkPntb3+rrVu3as6cOYqNjdXHH3+sPn36aOPGjYqNjfX2jACAi1BSUqLx48dbPQZOk5mZqZiYGKvHMJ7H7+zbqVMnvfbaa96cBQDQAKKiopSZmWn1GBdt//79mj17tmbMmKHo6Girx7loUVFRVo/QJFzURxQcPnxYhw8fVk1NTa3tfKAjAPiOwMDAJvWbf3R0dJN6PLg4HoVMYWGhxo4dq127dp3xeUk2m03V1dVeGQ4AAOBcPAqZe++9VzExMVqwYIHCw8N5yTUAALCERyHzzTffaOnSpercubO35wEAAKg3j95HZvDgwdq2bZu3ZwEAALggHp2Ref311zV27Fjt3LlTvXr1kr+/f63bb7rpJq8MBwAAcC4ehczGjRu1YcMG5eTknHEbi30BAEBj8eippUmTJumPf/yjSktLVVNTU+tCxAAAgMbiUcj88MMPmjJlisLDw709DwAAQL15FDKjR4/W2rVrvT0LAADABfFojUxMTIzS0tK0fv16xcbGnrHY989//rNXhgMAADgXj1+1FBwcrIKCgjM+7dpmsxEyAACgUXgUMnv37vX2HE2CX6XT6hEAn8H3A4DGcFEfGinJ/VlLl/LHFNjtdvm3CJC+KTj/zsAlxL9FgOx2u9VjAGjCPA6ZN998U88884x2794t6ed1M3/961919913e204U4SHh+utf74pp5PfQK22f/9+zZ49WzNmzFB0dLTV41zy7HY7r24E0KA8Cpnnn39ejz76qCZOnKgBAwZIktavX68JEybo+++/15QpU7w6pAnCw8P5D9uHREdHKyYmxuoxAAANzKOQmTdvnjIyMjRmzBj3tptuukk9e/bU448/fkmGDAAAaHwevY9MaWmp+vfvf8b2/v37q7S09KKHAgAAqA+PQqZz58567733ztj+7rvvqkuXLhc9FAAAQH149NTSzJkzddttt2ndunXuNTIbNmxQXl7eWQMHAACgIXh0RiY5OVmbN29W27ZtlZ2drezsbLVt21afffaZRo0a5e0ZAQAAzsrjl1/37dtXb731ljdnAQAAuCAenZH56KOPlJube8b23Nxc5eTkXPRQAAAA9eFRyDz88MOqrq4+Y7vL5dLDDz980UMBAADUh0chs3v3bvXo0eOM7d26ddOePXsueigAAID68Chk7Ha7vvnmmzO279mzR5dddtlFDwUAAFAfHoXMzTffrMmTJ6u4uNi9bc+ePXrwwQd10003eW04AACAc/EoZJ5++mlddtll6tatmzp27KiOHTuqe/fuatOmjZ599llvzwgAAHBWHr382m6369NPP9Xq1au1bds2BQUFKS4uTgkJCd6eDwAAoE4ev4+MzWbT0KFDNXToUG/OAwAAUG8eh0xeXp7y8vJ0+PBh1dTU1LrtjTfeuOjBAAAAzsfjz1qaNWuW+vXrp8jISNlsNm/PBQAAcF4ehcw//vEPLVq0SHfffbe35wEAAKg3j161dOLECfXv39/bswAAAFwQj0LmvvvuU1ZWlrdnAQAAuCAePbVUWVmpzMxMrVmzRnFxcfL39691+/PPP++V4QAAAM7Fo5DZvn27rr76aknSzp07vTkPAABAvXkUMmvXrvX2HAAAABfsgkJm9OjR593HZrNp6dKlHg8EAABQXxcUMna7vaHmAAAAuGAXFDILFy5sqDkAAAAumEcvvwYAAPAFhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADCWpSGTnp6ua6+9Vq1atVJYWJhGjhypoqKiWvtUVlYqNTVVbdq0UXBwsJKTk1VWVmbRxAAAwJdYGjIFBQVKTU3Vpk2btHr1ap08eVJDhw5VRUWFe58pU6bogw8+0JIlS1RQUKCDBw9q9OjRFk4NAAB8RXMrv/iqVatqXV+0aJHCwsJUWFiohIQEOZ1OLViwQFlZWRo0aJAkaeHCherevbs2bdqk6667zoqxAQCAj/CpNTJOp1OS1Lp1a0lSYWGhTp48qSFDhrj36datm6KiorRx48azHqOqqkrl5eW1LgAAoGnymZCpqanR5MmTNWDAAPXq1UuSdOjQIbVo0UKhoaG19g0PD9ehQ4fOepz09HTZ7Xb3xeFwNPToAADAIj4TMqmpqdq5c6feeeedizpOWlqanE6n+3LgwAEvTQgAAHyNpWtkfjFx4kR9+OGHWrdundq3b+/eHhERoRMnTujIkSO1zsqUlZUpIiLirMcKCAhQQEBAQ48MAAB8gKVnZFwulyZOnKjly5frk08+UceOHWvd3rdvX/n7+ysvL8+9raioSCUlJYqPj2/scQEAgI+x9IxMamqqsrKytGLFCrVq1cq97sVutysoKEh2u13jxo3T1KlT1bp1a4WEhGjSpEmKj4/nFUsAAMDakMnIyJAkDRw4sNb2hQsXKiUlRZL0wgsvyM/PT8nJyaqqqtKwYcP0yiuvNPKkAADAF1kaMi6X67z7BAYGav78+Zo/f34jTAQAAEziM69aAgAAuFCEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADBWc6sHgG+orKxUSUmJ1WNctP3799f603RRUVEKDAy0eoxLXllZmZxOp9VjXPKa2ve36ex2u8LDw60eQzaXy+WyeoiGVF5eLrvdLqfTqZCQEKvH8Vlff/21xo8fb/UYOE1mZqZiYmKsHuOSVlZWpj/ePUYnT1RZPQrgU/xbBOitf77ZYDFT35/fnJGBpJ9/88/MzLR6DJwmKirK6hEueU6nUydPVOn4Vf+nmkC71eMAPsGv0il9UyCn02n5WRlCBpKkwMBAfvMHzqEm0K6ay9paPQaA07DYFwAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxmls9AACYwO/4EatHAHyGL30/EDIAUA9Be9dZPQKAsyBkAKAejndMUE1QqNVjAD7B7/gRn4l7QgYA6qEmKFQ1l7W1egwAp2GxLwAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWJaGzLp165SUlKR27drJZrMpOzu71u0pKSmy2Wy1LsOHD7dmWAAA4HMsDZmKigr17t1b8+fPr3Of4cOHq7S01H3517/+1YgTAgAAX9bcyi+emJioxMTEc+4TEBCgiIiIRpoIAACYxOfXyOTn5yssLExdu3bVAw88oB9++OGc+1dVVam8vLzWBQAANE0+HTLDhw/Xm2++qby8PD311FMqKChQYmKiqqur67xPenq67Ha7++JwOBpxYgAA0JgsfWrpfG6//Xb332NjYxUXF6dOnTopPz9fgwcPPut90tLSNHXqVPf18vJyYgYAgCbKp8/InO6qq65S27ZttWfPnjr3CQgIUEhISK0LAABomowKmW+//VY//PCDIiMjrR4FAAD4AEufWjp27Fitsyt79+7V1q1b1bp1a7Vu3VozZ85UcnKyIiIiVFxcrIceekidO3fWsGHDLJwaAAD4CktDZsuWLbr++uvd139Z2zJ27FhlZGRo+/btWrx4sY4cOaJ27dpp6NCheuKJJxQQEGDVyAAAwIdYGjIDBw6Uy+Wq8/bc3NxGnAYAAJjGqDUyAAAAv0bIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiWftYSAJjCr9Jp9QiAz/Cl7wdCBgDOwW63y79FgPRNgdWjAD7Fv0WA7Ha71WMQMgBwLuHh4Xrrn2/K6fSd30AvVfv379fs2bM1Y8YMRUdHWz3OJc9utys8PNzqMQgZADif8PBwn/gPGz+Ljo5WTEyM1WPAR7DYFwAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLGaWz0AAKBhVVZWqqSkxOoxLtr+/ftr/Wm6qKgoBQYGWj2G8QgZAGjiSkpKNH78eKvH8JrZs2dbPYJXZGZmKiYmxuoxjEfIAEATFxUVpczMTKvHwGmioqKsHqFJIGQAoIkLDAzkN380WSz2BQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxmryn37tcrkkSeXl5RZPAgAA6uuXn9u//ByvS5MPmaNHj0qSHA6HxZMAAIALdfToUdnt9jpvt7nOlzqGq6mp0cGDB9WqVSvZbDarx0EDKy8vl8Ph0IEDBxQSEmL1OAC8iO/vS4vL5dLRo0fVrl07+fnVvRKmyZ+R8fPzU/v27a0eA40sJCSE/+iAJorv70vHuc7E/ILFvgAAwFiEDAAAMBYhgyYlICBAf//73xUQEGD1KAC8jO9vnE2TX+wLAACaLs7IAAAAYxEyAADAWIQMAAAwFiEDAACMRcjAOCkpKbLZbJozZ06t7dnZ2bx7M2Agl8ulIUOGaNiwYWfc9sorryg0NFTffvutBZPBBIQMjBQYGKinnnpK//vf/6weBcBFstlsWrhwoTZv3qxXX33VvX3v3r166KGHNG/ePN6hHXUiZGCkIUOGKCIiQunp6XXus3TpUvXs2VMBAQHq0KGDnnvuuUacEMCFcDgcmjt3rqZNm6a9e/fK5XJp3LhxGjp0qK655holJiYqODhY4eHhuvvuu/X999+77/v+++8rNjZWQUFBatOmjYYMGaKKigoLHw0aEyEDIzVr1kxPPvmk5s2bd9ZTzoWFhbr11lt1++23a8eOHXr88cf16KOPatGiRY0/LIB6GTt2rAYPHqx7771XL7/8snbu3KlXX31VgwYN0jXXXKMtW7Zo1apVKisr06233ipJKi0t1R133KF7771Xu3btUn5+vkaPHi3eIu3SwRviwTgpKSk6cuSIsrOzFR8frx49emjBggXKzs7WqFGj5HK5dNddd+m7777Txx9/7L7fQw89pJUrV+rLL7+0cHoA53L48GH17NlTP/74o5YuXaqdO3fqP//5j3Jzc937fPvtt3I4HCoqKtKxY8fUt29f7du3T9HR0RZODqtwRgZGe+qpp7R48WLt2rWr1vZdu3ZpwIABtbYNGDBAu3fvVnV1dWOOCOAChIWF6f7771f37t01cuRIbdu2TWvXrlVwcLD70q1bN0lScXGxevfurcGDBys2Nla33HKLXnvtNdbOXWIIGRgtISFBw4YNU1pamtWjAPCS5s2bq3nz5pKkY8eOKSkpSVu3bq112b17txISEtSsWTOtXr1aOTk56tGjh+bNm6euXbtq7969Fj8KNJbmVg8AXKw5c+bo6quvVteuXd3bunfvrg0bNtTab8OGDYqJiVGzZs0ae0QAHurTp4+WLl2qDh06uOPmdDabTQMGDNCAAQP02GOPKTo6WsuXL9fUqVMbeVpYgTMyMF5sbKzuuusuvfTSS+5tDz74oPLy8vTEE0/o66+/1uLFi/Xyyy9r2rRpFk4K4EKlpqbqxx9/1B133KHPP/9cxcXFys3N1T333KPq6mpt3rxZTz75pLZs2aKSkhItW7ZM3333nbp372716GgkhAyahFmzZqmmpsZ9vU+fPnrvvff0zjvvqFevXnrsscc0a9YspaSkWDckgAvWrl07bdiwQdXV1Ro6dKhiY2M1efJkhYaGys/PTyEhIVq3bp1GjBihmJgYPfLII3ruueeUmJho9ehoJLxqCQAAGIszMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAjJGZmSmHwyE/Pz+9+OKLXjnmvn37ZLPZtHXrVq8cD0DjImQANKiUlBTZbDbZbDb5+/srPDxcN9xwg954441aHytxPuXl5Zo4caKmT5+u//73vxo/fnyDzJufny+bzaYjR440yPEBeBchA6DBDR8+XKWlpdq3b59ycnJ0/fXX6y9/+YtuvPFGnTp1ql7HKCkp0cmTJ/X73/9ekZGRatmyZQNPDcAEhAyABhcQEKCIiAhdeeWV6tOnj/72t79pxYoVysnJ0aJFiyRJR44c0X333acrrrhCISEhGjRokLZt2yZJWrRokWJjYyVJV111lWw2m/bt26fi4mLdfPPNCg8PV3BwsK699lqtWbOm1te22WzKzs6utS00NNT9dX9t3759uv766yVJl19+uWw2Gx80Cvg4QgaAJQYNGqTevXtr2bJlkqRbbrlFhw8fVk5OjgoLC9WnTx8NHjxYP/74o2677TZ3oHz22WcqLS2Vw+HQsWPHNGLECOXl5emLL77Q8OHDlZSUpJKSEo9mcjgcWrp0qSSpqKhIpaWlmjt3rnceMIAGQcgAsEy3bt20b98+rV+/Xp999pmWLFmifv36qUuXLnr22WcVGhqq999/X0FBQWrTpo0k6YorrlBERISaNWum3r176/7771evXr3UpUsXPfHEE+rUqZP+/e9/ezRPs2bN1Lp1a0lSWFiYIiIiZLfbvfZ4AXhfc6sHAHDpcrlcstls2rZtm44dO+aOlV8cP35cxcXFdd7/2LFjevzxx7Vy5UqVlpbq1KlTOn78uMdnZACYh5ABYJldu3apY8eOOnbsmCIjI5Wfn3/GPqGhoXXef9q0aVq9erWeffZZde7cWUFBQfrDH/6gEydOuPex2WxyuVy17nfy5ElvPQQAFiNkAFjik08+0Y4dOzRlyhS1b99ehw4dUvPmzdWhQ4d6H2PDhg1KSUnRqFGjJP18hmbfvn219rniiitUWlrqvr5792799NNPdR6zRYsWkqTq6ur6PxgAliFkADS4qqoqHTp0SNXV1SorK9OqVauUnp6uG2+8UWPGjJGfn5/i4+M1cuRIPf3004qJidHBgwe1cuVKjRo1Sv369Tvrcbt06aJly5YpKSlJNptNjz766BnvTTNo0CC9/PLLio+PV3V1taZPny5/f/86Z42OjpbNZtOHH36oESNGKCgoSMHBwV799wDgPSz2BdDgVq1apcjISHXo0EHDhw/X2rVr9dJLL2nFihVq1qyZbDabPvroIyUkJOiee+5RTEyMbr/9du3fv1/h4eF1Hvf555/X5Zdfrv79+yspKUnDhg1Tnz59au3z3HPPyeFw6He/+53uvPNOTZs27ZzvQXPllVdq5syZevjhhxUeHq6JEyd67d8BgPfZXKc/eQwAAGAIzsgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAw1v8DM1m0YzeFG3QAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = sns.boxplot(data = loan, x = 'Default', y = 'Income')" ] @@ -212,10 +402,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 61, "id": "bcb7b490", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo40lEQVR4nO3dfViUdaL/8c8MIrAqg5oOkIBo4rOm2XGRsqNSaubxadvjLlta7aGTWql5NNfnR9QrzXzKaE1tj552S7NOrnoSdT25aGZlWqZmCJYCu0swooHGzPmjn/OLVVpGZ7iHr+/Xdc0l873vufmM1wXz4TvfuW+bx+PxCAAAwFB2qwMAAAAEEmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBodawOEAzcbrfOnj2rBg0ayGazWR0HAABUg8fj0fnz5xUbGyu7ver5G8qOpLNnzyouLs7qGAAA4DqcOXNGzZo1q3I7ZUdSgwYNJH3/nxUZGWlxGgAAUB0ul0txcXHe1/GqUHYk71tXkZGRlB0AAGqZf7QEhQXKAADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIzGVc8BACorK1NeXp7VMfAD8fHxCg8PtzqGESg7AADl5eUpPT3d6hj4gczMTCUlJVkdwwiUHQCA4uPjlZmZaXWMG5abm6t58+ZpypQpSkhIsDrODYmPj7c6gjEoOwAAhYeHGzWLkJCQYNTzwY1hgTIAADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABjN0rKzd+9eDRw4ULGxsbLZbNqyZUul7R6PR9OnT1dMTIwiIiKUmpqqkydPVtqnqKhIaWlpioyMVFRUlB577DGVlpbW4LMAAADBzNKyc+HCBXXu3FkrV6685vZFixZp2bJlWr16tQ4cOKB69eqpb9++Kisr8+6TlpamTz/9VO+++67eeecd7d27V+np6TX1FAAAQJCrY+U379+/v/r373/NbR6PR0uXLtXUqVM1aNAgSdKrr74qp9OpLVu2aPjw4Tp27Ji2b9+ugwcPqlu3bpKk5cuX6/7779dzzz2n2NjYGnsuAAAgOAXtmp2cnBzl5+crNTXVO+ZwONS9e3dlZ2dLkrKzsxUVFeUtOpKUmpoqu92uAwcOVHns8vJyuVyuSjcAAGCmoC07+fn5kiSn01lp3Ol0erfl5+eradOmlbbXqVNHjRo18u5zLRkZGXI4HN5bXFycn9MDAIBgEbRlJ5AmT56skpIS7+3MmTNWRwIAAAEStGUnOjpaklRQUFBpvKCgwLstOjpahYWFlbZ/9913Kioq8u5zLWFhYYqMjKx0AwAAZgraspOYmKjo6GhlZWV5x1wulw4cOKDk5GRJUnJysoqLi3Xo0CHvPrt27ZLb7Vb37t1rPDMAAAg+ln4aq7S0VF988YX3fk5Ojj7++GM1atRI8fHxGjt2rObOnatWrVopMTFR06ZNU2xsrAYPHixJatu2rfr166d/+7d/0+rVq3X58mWNGTNGw4cP55NYAABAksVl54MPPlCvXr2898ePHy9JGjFihNatW6eJEyfqwoULSk9PV3Fxse666y5t375d4eHh3sds2LBBY8aMUZ8+fWS32zVs2DAtW7asxp8LAAAITjaPx+OxOoTVXC6XHA6HSkpKWL8DALXYiRMnlJ6erszMTCUlJVkdBwFW3dfvoF2zAwAA4A+UHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMVsfqAABQ2xUUFKikpMTqGJCUm5tb6V9Yy+FwyOl0Wh1DNo/H47E6hNVcLpccDodKSkoUGRlpdRwAtUhBQYF+9dDDunyp3OooQNAJrRum//zdqwErPNV9/WZmBwBuQElJiS5fKte3Le6RO9xhdRwgaNjLSqQv/6SSkhLLZ3coOwDgB+5wh9z1brE6BoBrYIEyAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNGCuuxUVFRo2rRpSkxMVEREhFq2bKk5c+bI4/F49/F4PJo+fbpiYmIUERGh1NRUnTx50sLUAAAgmAR12Vm4cKFefPFFrVixQseOHdPChQu1aNEiLV++3LvPokWLtGzZMq1evVoHDhxQvXr11LdvX5WVlVmYHAAABIs6Vgf4MX/+8581aNAgDRgwQJLUvHlz/dd//Zfef/99Sd/P6ixdulRTp07VoEGDJEmvvvqqnE6ntmzZouHDh1uWHQAABIegntnp0aOHsrKydOLECUnS4cOH9d5776l///6SpJycHOXn5ys1NdX7GIfDoe7duys7O7vK45aXl8vlclW6AQAAMwX1zM6zzz4rl8ulNm3aKCQkRBUVFZo3b57S0tIkSfn5+ZIkp9NZ6XFOp9O77VoyMjI0a9aswAUHAABBI6hndv7whz9ow4YN2rhxoz788EOtX79ezz33nNavX39Dx508ebJKSkq8tzNnzvgpMQAACDZBPbPzH//xH3r22We9a286duyo3NxcZWRkaMSIEYqOjpYkFRQUKCYmxvu4goIC3X777VUeNywsTGFhYQHNDgAAgkNQz+xcvHhRdnvliCEhIXK73ZKkxMRERUdHKysry7vd5XLpwIEDSk5OrtGsAAAgOAX1zM7AgQM1b948xcfHq3379vroo4+0ZMkSPfroo5Ikm82msWPHau7cuWrVqpUSExM1bdo0xcbGavDgwdaGBwAAQSGoy87y5cs1bdo0jRo1SoWFhYqNjdXjjz+u6dOne/eZOHGiLly4oPT0dBUXF+uuu+7S9u3bFR4ebmFyAAAQLIK67DRo0EBLly7V0qVLq9zHZrNp9uzZmj17ds0FAwAAtUZQr9kBAAC4UZQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDSfy06LFi30t7/97arx4uJitWjRwi+hAAAA/MXnsnP69GlVVFRcNV5eXq6vv/7aL6EAAAD8pU51d3z77be9X+/YsUMOh8N7v6KiQllZWWrevLlfwwFAbWH/ttjqCEBQCaafiWqXncGDB0uSbDabRowYUWlbaGiomjdvrsWLF/s1HOBvFRUV+uSTT1RUVKRGjRqpU6dOCgkJsToWDBCRs9fqCACqUO2y43a7JUmJiYk6ePCgbrnlloCFAgJh7969WrVqlfLz871j0dHRGjVqlHr27GlhMpjg28SeckdEWR0DCBr2b4uD5o+AapedK3JycgKRAwiovXv3asaMGUpOTta0adOUmJionJwcbdiwQTNmzNCsWbMoPLgh7ogouevxRyAQjHwuO5KUlZWlrKwsFRYWemd8rnjllVf8Egzwl4qKCq1atUrJycmaO3eu7Pbv1+W3b99ec+fO1dSpU/Xiiy8qJSWFt7QAwEA+fxpr1qxZuu+++5SVlaW//vWv+uabbyrdgGDzySefKD8/X2lpad6ic4XdbldaWprOnTunTz75xKKEAIBA8nlmZ/Xq1Vq3bp0eeuihQOQB/K6oqEjS9+vNruXK+JX9AABm8Xlm59KlS+rRo0cgsgAB0ahRI0lVrze7Mn5lPwCAWXwuO7/+9a+1cePGQGQBAqJTp06Kjo7Whg0brlpj5na7tWHDBsXExKhTp04WJQQABJLPb2OVlZUpMzNTO3fuVKdOnRQaGlpp+5IlS/wWDvCHkJAQjRo1SjNmzNDUqVOVlpZW6dNY2dnZmjVrFouTAcBQPpedTz75RLfffrsk6ejRo5W22Ww2v4QC/K1nz56aNWuWVq1apdGjR3vHY2Ji+Ng5ABjO57Kze/fuQOQAAq5nz55KSUnhDMoAcJO5rvPsALVVSEiIunTpYnUMAEAN8rns9OrV60ffrtq1a9cNBQIAAPAnn8vOlfU6V1y+fFkff/yxjh49etUFQgEAAKzmc9l5/vnnrzk+c+ZMlZaW3nAgAAAAf/L5PDtV+dWvfsV1sQAAQNDxW9nJzs5WeHi4vw4HAADgFz6/jTV06NBK9z0ej86dO6cPPvhA06ZN81swAAAAf/C57Dgcjkr37Xa7WrdurdmzZ+u+++7zWzAAAAB/8LnsrF27NhA5AAAAAuK6Typ46NAhHTt2TJLUvn17TtQGAACCks9lp7CwUMOHD9eePXsUFRUlSSouLlavXr302muvqUmTJv7OCAAAcN18/jTWk08+qfPnz+vTTz9VUVGRioqKdPToUblcLj311FOByAgAAHDdfJ7Z2b59u3bu3Km2bdt6x9q1a6eVK1eyQBkAAAQdn2d23G63QkNDrxoPDQ2V2+32SygAAAB/8bns9O7dW08//bTOnj3rHfv66681btw49enTx6/hAAAAbpTPZWfFihVyuVxq3ry5WrZsqZYtWyoxMVEul0vLly8PREYAAIDr5vOanbi4OH344YfauXOnPv/8c0lS27ZtlZqa6vdwAAAAN+q6zrNjs9l077336t577/V3HgAAAL+6rrJz8OBB7d69W4WFhVctSl6yZIlfggEAAPiDz2Vn/vz5mjp1qlq3bi2n0ymbzebd9sOvAQAAgoHPZeeFF17QK6+8opEjRwYgDgAAgH/5/Gksu92ulJSUQGQBAADwO59ndsaNG6eVK1dq6dKlAYgDALWTvazE6ghAUAmmnwmfy86ECRM0YMAAtWzZUu3atbvqbMqbN2/2Wzjp+xMWTpo0Sdu2bdPFixd12223ae3aterWrZskyePxaMaMGXr55ZdVXFyslJQUvfjii2rVqpVfcwDAtTgcDoXWDZO+/JPVUYCgE1o3TA6Hw+oYvpedp556Srt371avXr3UuHHjgC5K/uabb5SSkqJevXpp27ZtatKkiU6ePKmGDRt691m0aJGWLVum9evXKzExUdOmTVPfvn312WefKTw8PGDZAECSnE6n/vN3r6qkJHj+ir2Z5ebmat68eZoyZYoSEhKsjnPTczgccjqdVsfwveysX79emzZt0oABAwKRp5KFCxcqLi5Oa9eu9Y4lJiZ6v/Z4PFq6dKmmTp2qQYMGSZJeffVVOZ1ObdmyRcOHDw94RgBwOp1B8Qsd/19CQoKSkpKsjoEg4fMC5UaNGqlly5aByHKVt99+W926ddODDz6opk2bqkuXLnr55Ze923NycpSfn1/p7M0Oh0Pdu3dXdnZ2lcctLy+Xy+WqdAMAAGbyuezMnDlTM2bM0MWLFwORp5Ivv/zSu/5mx44deuKJJ/TUU09p/fr1kqT8/HxJuuovKqfT6d12LRkZGXI4HN5bXFxc4J4EAACwlM9vYy1btkynTp2S0+lU8+bNr1qg/OGHH/otnNvtVrdu3TR//nxJUpcuXXT06FGtXr1aI0aMuO7jTp48WePHj/fed7lcFB4AAAzlc9kZPHhwAGJcW0xMjNq1a1dprG3bttq0aZMkKTo6WpJUUFCgmJgY7z4FBQW6/fbbqzxuWFiYwsLC/B8YAAAEHZ/LzowZM6rcVlFRcUNh/l5KSoqOHz9eaezEiRPeFfaJiYmKjo5WVlaWt9y4XC4dOHBATzzxhF+zAACA2snnNTvXcuLECU2aNEnNmjXzx+G8xo0bp/3792v+/Pn64osvtHHjRmVmZmr06NGSvr8W19ixYzV37ly9/fbbOnLkiB5++GHFxsbW6AwUAAAIXtd11XNJunjxon7/+9/rlVdeUXZ2trp161ZpHYw/3HnnnXrzzTc1efJkzZ49W4mJiVq6dKnS0tK8+0ycOFEXLlxQenq6iouLddddd2n79u2cYwcAAEiSbB6Px+PLA/bv36/f/va3ev311xUfH69jx45p9+7duvvuuwOVMeBcLpccDodKSkoUGRlpdRwAwHU6ceKE0tPTlZmZyXl2bgLVff2u9ttYixcvVvv27fWzn/1MDRs21N69e3XkyBHZbDY1btzYL6EBAAD8rdpvY02aNEmTJk3S7NmzFRISEshMAAAAflPtmZ05c+bo9ddfV2JioiZNmqSjR48GMhcAAIBfVLvsTJ48WSdOnNDvfvc75efnq3v37urcubM8Ho+++eabQGYEAAC4bj5/9Pyee+7R+vXrlZ+fr1GjRumOO+7QPffcox49emjJkiWByAgAAHDdrvs8Ow0aNNDjjz+uAwcO6KOPPtI//dM/acGCBf7MBgAAcMP8clLBjh07aunSpfr666/9cTgAAAC/8UvZueLvLwoKAABgNb+WHQAAgGBD2QEAAEaj7AAAAKNd14VA3W63vvjiCxUWFsrtdlfa1rNnT78EAwAA8Aefy87+/fv1y1/+Urm5ufr7a4jabDZVVFT4LRwAAMCN8rns/Pu//7u6deumrVu3KiYmRjabLRC5AAAA/MLnsnPy5Em98cYbuu222wKRBwAAwK98XqDcvXt3ffHFF4HIAgAA4Hc+z+w8+eSTeuaZZ5Sfn6+OHTtedSLBTp06+S0cAADAjfK57AwbNkyS9Oijj3rHbDabPB4PC5QBAEDQ8bns5OTkBCIHAABAQPhcdhISEgKRAwAAICCu66SCkvTZZ58pLy9Ply5dqjT+L//yLzccCgAAwF98LjtffvmlhgwZoiNHjnjX6kjynm+HNTsAACCY+PzR86efflqJiYkqLCzUT37yE3366afau3evunXrpj179gQgIgAAwPXzeWYnOztbu3bt0i233CK73S673a677rpLGRkZeuqpp/TRRx8FIicAAMB18Xlmp6KiQg0aNJAk3XLLLTp79qyk7xcuHz9+3L/pAAAAbpDPMzsdOnTQ4cOHlZiYqO7du2vRokWqW7euMjMz1aJFi0BkRJAoKytTXl6e1THwA/Hx8QoPD7c6BgAENZ/LztSpU3XhwgVJ0uzZs/XAAw/o7rvvVuPGjfX73//e7wERPPLy8pSenm51DPxAZmamkpKSrI4BAEHN57LTt29f79e33XabPv/8cxUVFalhw4ZcAd1w8fHxyszMtDrGDcvNzdW8efM0ZcqUWn/eqPj4eKsjAEDQu+7z7EjSV199JUlq1qyZX8IguIWHhxs1i5CQkGDU8wEAXJvPC5Tdbrdmz54th8OhhIQEJSQkKCoqSnPmzJHb7Q5ERgAAgOvm88zOlClTtGbNGi1YsEApKSmSpPfee08zZ85UWVmZ5s2b5/eQAAAA18vnsrN+/Xr99re/rXRZiE6dOunWW2/VqFGjKDsAACCo+Pw2VlFRkdq0aXPVeJs2bVRUVOSXUAAAAP7ic9np3LmzVqxYcdX4ihUr1LlzZ7+EAgAA8Bef38ZatGiRBgwYoJ07dyo5OVnS95eQOHPmjP74xz/6PSAAAMCN8Hlm55577tGJEyc0ZMgQFRcXq7i4WEOHDtXx48d19913ByIjAADAdbuu8+zExsZetRD5q6++Unp6uhEnnQMAAObweWanKn/729+0Zs0afx0OAADAL/xWdgAAAIIRZQcAABiNsgMAAIxW7QXKQ4cO/dHtxcXFN5oFAADA76pddhwOxz/c/vDDD99wIAAAAH+qdtlZu3ZtIHMAAAAEBGt2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGC0WlV2FixYIJvNprFjx3rHysrKNHr0aDVu3Fj169fXsGHDVFBQYF1IAAAQVGpN2Tl48KBeeuklderUqdL4uHHj9N///d96/fXX9ac//Ulnz57V0KFDLUoJAACCTa0oO6WlpUpLS9PLL7+shg0besdLSkq0Zs0aLVmyRL1799Ydd9yhtWvX6s9//rP2799vYWIAABAs6lgdoDpGjx6tAQMGKDU1VXPnzvWOHzp0SJcvX1Zqaqp3rE2bNoqPj1d2drZ++tOfXvN45eXlKi8v9953uVyBCw8AtUBZWZny8vKsjnHDcnNzK/1bm8XHxys8PNzqGEYI+rLz2muv6cMPP9TBgwev2pafn6+6desqKiqq0rjT6VR+fn6Vx8zIyNCsWbP8HRUAaq28vDylp6dbHcNv5s2bZ3WEG5aZmamkpCSrYxghqMvOmTNn9PTTT+vdd9/1a7udPHmyxo8f773vcrkUFxfnt+MDQG0THx+vzMxMq2PgB+Lj462OYIygLjuHDh1SYWGhunbt6h2rqKjQ3r17tWLFCu3YsUOXLl1ScXFxpdmdgoICRUdHV3ncsLAwhYWFBTI6ANQq4eHhzCLAWEFddvr06aMjR45UGnvkkUfUpk0bTZo0SXFxcQoNDVVWVpaGDRsmSTp+/Ljy8vKUnJxsRWQAABBkgrrsNGjQQB06dKg0Vq9ePTVu3Ng7/thjj2n8+PFq1KiRIiMj9eSTTyo5ObnKxckAAODmEtRlpzqef/552e12DRs2TOXl5erbt69WrVpldSwAABAkal3Z2bNnT6X74eHhWrlypVauXGlNIAAAENRqxUkFAQAArletm9mprQoKClRSUmJ1DMisk46ZwOFwyOl0Wh0DgMFsHo/HY3UIq7lcLjkcDpWUlCgyMtLvxy8oKNCvHnpYly+V/+OdgZtMaN0w/efvXqXwAPBZdV+/mdmpASUlJbp8qVzftrhH7nCH1XGAoGEvK5G+/JNKSkooOwAChrJTg9zhDrnr3WJ1DAAAbiosUAYAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNK56XoPs3xZbHQEIKvxMAKgJlJ0aFJGz1+oIAADcdCg7NejbxJ5yR0RZHQMIGvZvi/kjAEDAUXZqkDsiSu56t1gdAwCAmwoLlAEAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo9WxOsDNxF5WYnUEIKjwMwGgJgR12cnIyNDmzZv1+eefKyIiQj169NDChQvVunVr7z5lZWV65pln9Nprr6m8vFx9+/bVqlWr5HQ6LUxemcPhUGjdMOnLP1kdBQg6oXXD5HA4rI4BwGA2j8fjsTpEVfr166fhw4frzjvv1Hfffaff/OY3Onr0qD777DPVq1dPkvTEE09o69atWrdunRwOh8aMGSO73a59+/ZV+/u4XC45HA6VlJQoMjIyIM+loKBAJSX8FRsMcnNzNW/ePE2ZMkUJCQlWx7npORyOoPrjBEDtUd3X76Ce2dm+fXul++vWrVPTpk116NAh9ezZUyUlJVqzZo02btyo3r17S5LWrl2rtm3bav/+/frpT396zeOWl5ervLzce9/lcgXuSfw/TqeTX+hBJiEhQUlJSVbHAAAEWK1aoHxlZqRRo0aSpEOHDuny5ctKTU317tOmTRvFx8crOzu7yuNkZGTI4XB4b3FxcYENDgAALFNryo7b7dbYsWOVkpKiDh06SJLy8/NVt25dRUVFVdrX6XQqPz+/ymNNnjxZJSUl3tuZM2cCGR0AAFgoqN/G+qHRo0fr6NGjeu+99274WGFhYQoLC/NDKgAAEOxqxczOmDFj9M4772j37t1q1qyZdzw6OlqXLl1ScXFxpf0LCgoUHR1dwykBAEAwCuqy4/F4NGbMGL355pvatWuXEhMTK22/4447FBoaqqysLO/Y8ePHlZeXp+Tk5JqOCwAAglBQv401evRobdy4UW+99ZYaNGjgXYfjcDgUEREhh8Ohxx57TOPHj1ejRo0UGRmpJ598UsnJyVV+EgsAANxcgrrsvPjii5Kkf/7nf640vnbtWo0cOVKS9Pzzz8tut2vYsGGVTioIAAAgBXnZqc75DsPDw7Vy5UqtXLmyBhIBAIDaJqjX7AAAANwoyg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsAAAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNHqWB0AtUdZWZny8vKsjnHDcnNzK/1bm8XHxys8PNzqGAAQ1Cg7qLa8vDylp6dbHcNv5s2bZ3WEG5aZmamkpCSrYwBAUKPsoNri4+OVmZlpdQz8QHx8vNURACDoUXZQbeHh4cwiAABqHRYoAwAAo1F2AACA0Sg7AADAaJQdAABgNMoOAAAwGmUHAAAYjbIDAACMRtkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaVz2X5PF4JEkul8viJAAAoLquvG5feR2vCmVH0vnz5yVJcXFxFicBAAC+On/+vBwOR5XbbZ5/VIduAm63W2fPnlWDBg1ks9msjoMAc7lciouL05kzZxQZGWl1HAB+xM/3zcXj8ej8+fOKjY2V3V71yhxmdiTZ7XY1a9bM6hioYZGRkfwyBAzFz/fN48dmdK5ggTIAADAaZQcAABiNsoObTlhYmGbMmKGwsDCrowDwM36+cS0sUAYAAEZjZgcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdmCkkSNHymazacGCBZXGt2zZwlmygVrI4/EoNTVVffv2vWrbqlWrFBUVpa+++sqCZKgNKDswVnh4uBYuXKhvvvnG6igAbpDNZtPatWt14MABvfTSS97xnJwcTZw4UcuXL+dM+KgSZQfGSk1NVXR0tDIyMqrcZ9OmTWrfvr3CwsLUvHlzLV68uAYTAvBFXFycXnjhBU2YMEE5OTnyeDx67LHHdN9996lLly7q37+/6tevL6fTqYceekh//etfvY9944031LFjR0VERKhx48ZKTU3VhQsXLHw2qEmUHRgrJCRE8+fP1/Lly685vX3o0CH9/Oc/1/Dhw3XkyBHNnDlT06ZN07p162o+LIBqGTFihPr06aNHH31UK1as0NGjR/XSSy+pd+/e6tKliz744ANt375dBQUF+vnPfy5JOnfunH7xi1/o0Ucf1bFjx7Rnzx4NHTpUnGbu5sFJBWGkkSNHqri4WFu2bFFycrLatWunNWvWaMuWLRoyZIg8Ho/S0tL0l7/8Rf/zP//jfdzEiRO1detWffrppxamB/BjCgsL1b59exUVFWnTpk06evSo/vd//1c7duzw7vPVV18pLi5Ox48fV2lpqe644w6dPn1aCQkJFiaHVZjZgfEWLlyo9evX69ixY5XGjx07ppSUlEpjKSkpOnnypCoqKmoyIgAfNG3aVI8//rjatm2rwYMH6/Dhw9q9e7fq16/vvbVp00aSdOrUKXXu3Fl9+vRRx44d9eCDD+rll19mLd9NhrID4/Xs2VN9+/bV5MmTrY4CwE/q1KmjOnXqSJJKS0s1cOBAffzxx5VuJ0+eVM+ePRUSEqJ3331X27ZtU7t27bR8+XK1bt1aOTk5Fj8L1JQ6VgcAasKCBQt0++23q3Xr1t6xtm3bat++fZX227dvn5KSkhQSElLTEQFcp65du2rTpk1q3ry5twD9PZvNppSUFKWkpGj69OlKSEjQm2++qfHjx9dwWliBmR3cFDp27Ki0tDQtW7bMO/bMM88oKytLc+bM0YkTJ7R+/XqtWLFCEyZMsDApAF+NHj1aRUVF+sUvfqGDBw/q1KlT2rFjhx555BFVVFTowIEDmj9/vj744APl5eVp8+bN+stf/qK2bdtaHR01hLKDm8bs2bPldru997t27ao//OEPeu2119ShQwdNnz5ds2fP1siRI60LCcBnsbGx2rdvnyoqKnTfffepY8eOGjt2rKKiomS32xUZGam9e/fq/vvvV1JSkqZOnarFixerf//+VkdHDeHTWAAAwGjM7AAAAKNRdgAAgNEoOwAAwGiUHQAAYDTKDgAAMBplBwAAGI2yAwAAjEbZAQAARqPsADBKZmam4uLiZLfbtXTpUr8c8/Tp07LZbPr444/9cjwANYuyA8ByI0eOlM1mk81mU2hoqJxOp+6991698sorlS7x8Y+4XC6NGTNGkyZN0tdff6309PSA5N2zZ49sNpuKi4sDcnwA/kXZARAU+vXrp3Pnzun06dPatm2bevXqpaeffloPPPCAvvvuu2odIy8vT5cvX9aAAQMUExOjn/zkJwFODaA2oOwACAphYWGKjo7Wrbfeqq5du+o3v/mN3nrrLW3btk3r1q2TJBUXF+vXv/61mjRposjISPXu3VuHDx+WJK1bt04dO3aUJLVo0UI2m02nT5/WqVOnNGjQIDmdTtWvX1933nmndu7cWel722w2bdmypdJYVFSU9/v+0OnTp9WrVy9JUsOGDWWz2bh4LBDkKDsAglbv3r3VuXNnbd68WZL04IMPqrCwUNu2bdOhQ4fUtWtX9enTR0VFRfrXf/1Xb4l5//33de7cOcXFxam0tFT333+/srKy9NFHH6lfv34aOHCg8vLyritTXFycNm3aJEk6fvy4zp07pxdeeME/TxhAQFB2AAS1Nm3a6PTp03rvvff0/vvv6/XXX1e3bt3UqlUrPffcc4qKitIbb7yhiIgINW7cWJLUpEkTRUdHKyQkRJ07d9bjjz+uDh06qFWrVpozZ45atmypt99++7ryhISEqFGjRpKkpk2bKjo6Wg6Hw2/PF4D/1bE6AAD8GI/HI5vNpsOHD6u0tNRbaK749ttvderUqSofX1paqpkzZ2rr1q06d+6cvvvuO3377bfXPbMDoPah7AAIaseOHVNiYqJKS0sVExOjPXv2XLVPVFRUlY+fMGGC3n33XT333HO67bbbFBERoZ/97Ge6dOmSdx+bzSaPx1PpcZcvX/bXUwBgMcoOgKC1a9cuHTlyROPGjVOzZs2Un5+vOnXqqHnz5tU+xr59+zRy5EgNGTJE0vczPadPn660T5MmTXTu3Dnv/ZMnT+rixYtVHrNu3bqSpIqKiuo/GQCWoewACArl5eXKz89XRUWFCgoKtH37dmVkZOiBBx7Qww8/LLvdruTkZA0ePFiLFi1SUlKSzp49q61bt2rIkCHq1q3bNY/bqlUrbd68WQMHDpTNZtO0adOuOndP7969tWLFCiUnJ6uiokKTJk1SaGholVkTEhJks9n0zjvv6P7771dERITq16/v1/8PAP7DAmUAQWH79u2KiYlR8+bN1a9fP+3evVvLli3TW2+9pZCQENlsNv3xj39Uz5499cgjjygpKUnDhw9Xbm6unE5nlcddsmSJGjZsqB49emjgwIHq27evunbtWmmfxYsXKy4uTnfffbd++ctfasKECT96jp5bb71Vs2bN0rPPPiun06kxY8b47f8BgP/ZPH//RjUAAIBBmNkBAABGo+wAAACjUXYAAIDRKDsAAMBolB0AAGA0yg4AADAaZQcAABiNsgMAAIxG2QEAAEaj7AAAAKNRdgAAgNH+D934uUygSDipAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = sns.boxplot(data = loan, x = 'Default', y = 'Loan Amount')" ] @@ -247,7 +448,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 62, "id": "04b9e4bd", "metadata": {}, "outputs": [], @@ -265,10 +466,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 63, "id": "f0e2438f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmSUlEQVR4nO3de3BU5f3H8c8m5GbJriCSEFiNFQUxJCBgGihetwbaQfEypbY1EC+tFhBJKxorwVsN1aI4Ay0tVXHaUvFe6wWFVLBglDEYReUmSoPABrDDboyQ4O75/cGPtQsJZDdn2Wez79fMmTEn53nO9zlPjvvh7NmzDsuyLAEAABgoJd4FAAAAtIegAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgrG7xLqAjgsGgduzYoezsbDkcjniXAwAAOsCyLDU1NSkvL08pKdFdG0mIoLJjxw653e54lwEAAKKwbds29evXL6q2CRFUsrOzJR0cqNPpjHM1AACgI/x+v9xud+h1PBoJEVQOvd3jdDoJKgAAJJjO3LbBzbQAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMZKiI8n2ykYtCSHtK81oA93+OTf97WcWd1UkOdSVnqqJCklwo9RBYKWHP/f57rtPjXtP6DszDQN7nuwT8uSUlM63ic12lOj3f3FatymS4QxJ0KNAKKTVEHFsixtamzSY6u36p/v79C+A4HQ77LSUjWuKE/XjsrXgNyOP6r/UJ+PH6XP8lH5GtjBPqnR3hrt6i9W4zZdIow5EWoEED2HZVlWvIs4Fr/fL5fLJZ/P16kHvs1dvklzl28+5na3eM7QLZ4z49InNSZPjYkgEcacCDUCycqO1++kuKJiWZYeqdncof+ZSdLc5ZvlkHTzxWe0+y8wu/ukxuSpMREkwpgToUYAnRfxzbRvvvmmxo0bp7y8PDkcDr3wwgvHbLNixQqdc845ysjIUP/+/bVo0aIoSo1OMGhpo7epw/8zO+Th5Zu10dukYBsXnAJBSxui7HODt0mBYHif1GhPjXb3J8Vm3KZLhDEnQo0A7BFxUGlublZRUZHmz5/foe0/++wz/eAHP9CFF16o+vp63XLLLbr++uv12muvRVxsVBzSY6u3RtX08bfabudwSI9H2eeit7bqiH/MUWPE2qrR9jFLMRm38RJhzIlQIwBbRBxUxo4dq/vuu0+XX355h7ZfsGCBTjvtNM2ZM0dnnXWWpkyZoquuukoPP/xwxMVGY19rQC++vz2qti/W79C+1sAR6+3ukxqTp8ZEkAhjToQaAdgj5s9Rqa2tlcfjCVtXWlqq2tradtu0tLTI7/eHLdH6cIdP+w8Eo2q770BAH+04ct/rtne2Tx81xqBGu/uTYjNu0yXCmBOhRgD2iHlQ8Xq9ysnJCVuXk5Mjv9+vffv2tdmmurpaLpcrtLjd7qj379/3ddRtJcm//8AR65raWBdRn4fVRI1R9nlYTXb31966iPrsZE3xkAhjToQaAdjDyCfTVlZWyufzhZZt27ZF3Zczq3MfbHJmph2xLruNdRH1eVhN1Bhln4fVZHd/7a2LqM9O1hQPiTDmRKgRgD1iHlRyc3PV2NgYtq6xsVFOp1NZWVlttsnIyJDT6QxbolWQ51JWWmpUbbPSUnV23pH7Hty3s326qDEGNdrdnxSbcZsuEcacCDUCsEfMg0pJSYlqamrC1i1btkwlJSWx3rUkKSv94JMpo3HpkLzQ47dj2Sc1Jk+NiSARxpwINQKwR8RB5csvv1R9fb3q6+slHfz4cX19vRoaGiQdfNumrKwstP2NN96oTz/9VDNmzNCGDRv0+9//Xk899ZSmT59uzwiOxZKuHZUfVdPykW23syypPMo+J43M1xGPcKDGiLVVo+1jlmIybuMlwpgToUYAtog4qLz77rsaOnSohg4dKkmqqKjQ0KFDVVVVJUnauXNnKLRI0mmnnaaXX35Zy5YtU1FRkebMmaM///nPKi0ttWkIR5eS4tCA3Gzd4jkjonbTPWdoQG52m19klpri0MAo+xyYm33EF+FRoz012t2fFJtxmy4RxpwINQKwR1J9188jyzfp4Q48yXK65wxN6+B3gtjdJzUmT42JIBHGnAg1AsnKjtfvpAoqlnXwsduPv7X14EOfDvuW1UuH5Kl8ZOTf+rvB26RFR+lz0sjIvvWXGu2p0c7+YjVu0yXCmBOhRiBZEVSicOg7Pva1Hnzok3//ATkz03R2njN0g12kl4UDQUsOx8E+P9zhU9O+r+XM6qaz81zKSk+VZanNtxWoMbY12t2fFJtxmy4RxpwINQLJiKACAACMZcfrt5EPfAMAAJAIKgAAwGAEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjBVVUJk/f77y8/OVmZmp4uJirVmz5qjbz507VwMGDFBWVpbcbremT5+u/fv3R1UwAABIHhEHlSVLlqiiokKzZs3S2rVrVVRUpNLSUu3atavN7RcvXqzbb79ds2bN0vr16/Xoo49qyZIluuOOOzpdPAAA6NoclmVZkTQoLi7WiBEjNG/ePElSMBiU2+3W1KlTdfvttx+x/ZQpU7R+/XrV1NSE1v3yl7/UO++8o1WrVrW5j5aWFrW0tIR+9vv9crvd8vl8cjqdkZQLAADixO/3y+Vyder1O6IrKq2traqrq5PH4/mmg5QUeTwe1dbWttlm5MiRqqurC7099Omnn+qVV17R97///Xb3U11dLZfLFVrcbnckZQIAgC6iWyQb79mzR4FAQDk5OWHrc3JytGHDhjbb/PjHP9aePXv03e9+V5Zl6euvv9aNN9541Ld+KisrVVFREfr50BUVAACQXGL+qZ8VK1bo/vvv1+9//3utXbtWzz33nF5++WXde++97bbJyMiQ0+kMWwAAQPKJ6IpKr169lJqaqsbGxrD1jY2Nys3NbbPNzJkzdc011+j666+XJA0ePFjNzc362c9+pl//+tdKSeET0gAAoG0RpYT09HQNGzYs7MbYYDCompoalZSUtNnmq6++OiKMpKamSpIivI8XAAAkmYiuqEhSRUWFJk6cqOHDh+vcc8/V3Llz1dzcrPLycklSWVmZ+vbtq+rqaknSuHHj9NBDD2no0KEqLi7WJ598opkzZ2rcuHGhwAIAANCWiIPKhAkTtHv3blVVVcnr9WrIkCFaunRp6AbbhoaGsCsod955pxwOh+68805t375dJ598ssaNG6ff/OY39o0CAAB0SRE/RyUe7PgcNgAAOL6O+3NUAAAAjieCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWFEFlfnz5ys/P1+ZmZkqLi7WmjVrjrr93r17NXnyZPXp00cZGRk688wz9corr0RVMAAASB7dIm2wZMkSVVRUaMGCBSouLtbcuXNVWlqqjRs3qnfv3kds39raqu9973vq3bu3nnnmGfXt21f/+c9/dOKJJ9pRPwAA6MIclmVZkTQoLi7WiBEjNG/ePElSMBiU2+3W1KlTdfvttx+x/YIFC/Tggw9qw4YNSktL69A+Wlpa1NLSEvrZ7/fL7XbL5/PJ6XRGUi4AAIgTv98vl8vVqdfviN76aW1tVV1dnTwezzcdpKTI4/Gotra2zTYvvviiSkpKNHnyZOXk5KigoED333+/AoFAu/uprq6Wy+UKLW63O5IyAQBAFxFRUNmzZ48CgYBycnLC1ufk5Mjr9bbZ5tNPP9UzzzyjQCCgV155RTNnztScOXN03333tbufyspK+Xy+0LJt27ZIygQAAF1ExPeoRCoYDKp3797605/+pNTUVA0bNkzbt2/Xgw8+qFmzZrXZJiMjQxkZGbEuDQAAGC6ioNKrVy+lpqaqsbExbH1jY6Nyc3PbbNOnTx+lpaUpNTU1tO6ss86S1+tVa2ur0tPToygbAAAkg4je+klPT9ewYcNUU1MTWhcMBlVTU6OSkpI224waNUqffPKJgsFgaN2mTZvUp08fQgoAADiqiJ+jUlFRoYULF+qJJ57Q+vXrddNNN6m5uVnl5eWSpLKyMlVWVoa2v+mmm/Tf//5X06ZN06ZNm/Tyyy/r/vvv1+TJk+0bBQAA6JIivkdlwoQJ2r17t6qqquT1ejVkyBAtXbo0dINtQ0ODUlK+yT9ut1uvvfaapk+frsLCQvXt21fTpk3TbbfdZt8oAABAlxTxc1TiwY7PYQMAgOPruD9HBQAA4HgiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjBVVUJk/f77y8/OVmZmp4uJirVmzpkPtnnzySTkcDo0fPz6a3QIAgCQTcVBZsmSJKioqNGvWLK1du1ZFRUUqLS3Vrl27jtpu69at+tWvfqXRo0dHXSwAAEguEQeVhx56SDfccIPKy8s1aNAgLViwQCeccIIee+yxdtsEAgH95Cc/0d13361vf/vbnSoYAAAkj4iCSmtrq+rq6uTxeL7pICVFHo9HtbW17ba755571Lt3b1133XUd2k9LS4v8fn/YAgAAkk9EQWXPnj0KBALKyckJW5+TkyOv19tmm1WrVunRRx/VwoULO7yf6upquVyu0OJ2uyMpEwAAdBEx/dRPU1OTrrnmGi1cuFC9evXqcLvKykr5fL7Qsm3bthhWCQAATNUtko179eql1NRUNTY2hq1vbGxUbm7uEdtv2bJFW7du1bhx40LrgsHgwR1366aNGzfq9NNPP6JdRkaGMjIyIikNAAB0QRFdUUlPT9ewYcNUU1MTWhcMBlVTU6OSkpIjth84cKDWrVun+vr60HLppZfqwgsvVH19PW/pAACAo4roiookVVRUaOLEiRo+fLjOPfdczZ07V83NzSovL5cklZWVqW/fvqqurlZmZqYKCgrC2p944omSdMR6AACAw0UcVCZMmKDdu3erqqpKXq9XQ4YM0dKlS0M32DY0NCglhQfeAgCAznNYlmXFu4hj8fv9crlc8vl8cjqd8S4HAAB0gB2v31z6AAAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMFVVQmT9/vvLz85WZmani4mKtWbOm3W0XLlyo0aNHq0ePHurRo4c8Hs9RtwcAADgk4qCyZMkSVVRUaNasWVq7dq2KiopUWlqqXbt2tbn9ihUrdPXVV+uNN95QbW2t3G63LrnkEm3fvr3TxQMAgK7NYVmWFUmD4uJijRgxQvPmzZMkBYNBud1uTZ06Vbfffvsx2wcCAfXo0UPz5s1TWVlZh/bp9/vlcrnk8/nkdDojKRcAAMSJHa/fEV1RaW1tVV1dnTwezzcdpKTI4/Gotra2Q3189dVXOnDggHr27NnuNi0tLfL7/WELAABIPhEFlT179igQCCgnJydsfU5Ojrxeb4f6uO2225SXlxcWdg5XXV0tl8sVWtxudyRlAgCALuK4fupn9uzZevLJJ/X8888rMzOz3e0qKyvl8/lCy7Zt245jlQAAwBTdItm4V69eSk1NVWNjY9j6xsZG5ebmHrXt7373O82ePVvLly9XYWHhUbfNyMhQRkZGJKUBAIAuKKIrKunp6Ro2bJhqampC64LBoGpqalRSUtJuuwceeED33nuvli5dquHDh0dfLQAASCoRXVGRpIqKCk2cOFHDhw/Xueeeq7lz56q5uVnl5eWSpLKyMvXt21fV1dWSpN/+9reqqqrS4sWLlZ+fH7qXpXv37urevbuNQwEAAF1NxEFlwoQJ2r17t6qqquT1ejVkyBAtXbo0dINtQ0ODUlK+uVDzhz/8Qa2trbrqqqvC+pk1a5buuuuuzlUPAAC6tIifoxIPPEcFAIDEc9yfowIAAHA8EVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGCsbvEuAIiVYNCSHNK+1oA+3OGTf9/XcmZ1U0GeS1npqZKkFIcjzlWaLxbHMRC05Pj/Ptdt96lp/wFlZ6ZpcN+DfVqWlJrS8T5jUaPdfdo95lhIhHMmEY5jLNg9N4kw14cQVNAlWZalTY1Nemz1Vv3z/R3adyAQ+l1WWqrGFeXp2lH5GpCbLYchJ6OJYnEcD/X5+FH6LB+Vr4Ed7DOWNdrVp91jjoVEOGcS4TjGQqz+Hk2e6//lsCzLincRx+L3++VyueTz+eR0OuNdDhLA3OWbNHf55mNud4vnDN3iOfM4VJSYYnEc7e4zWWu0GzWaK5H/Hu14/eaKCroUy7L0SM3mDp2EkjR3+WY5JN188RlG/MvBFLE4jnb3maw12o0azZWMf49tiepm2vnz5ys/P1+ZmZkqLi7WmjVrjrr9008/rYEDByozM1ODBw/WK6+8ElWxwNEEg5Y2eps6fBIe8vDyzdrobVLQ/IuLx0UsjmMgaGlDlH1u8DYpEAzvMxY12t2n3WOOhUQ4ZxLhOMaC3XOTCHPdnoiDypIlS1RRUaFZs2Zp7dq1KioqUmlpqXbt2tXm9m+99ZauvvpqXXfddXrvvfc0fvx4jR8/Xh9++GGniwfCOKTHVm+Nqunjb0XXrkuKwXF0OKTHo+xz0VtbdcQ/5mIx1zb3afuYYyEBzpmEOI6xYPfcJMBctyfioPLQQw/phhtuUHl5uQYNGqQFCxbohBNO0GOPPdbm9o888ojGjBmjW2+9VWeddZbuvfdenXPOOZo3b16niwf+177WgF58f3tUbV+s36F9rYFjb5gEYnEc7e4zWWu0GzWaKxn/HtsTUVBpbW1VXV2dPB7PNx2kpMjj8ai2trbNNrW1tWHbS1JpaWm720tSS0uL/H5/2AIcy4c7fNp/IBhV230HAvpoB39nUmyO47rtne3TF/Ma7e7T7jHHQiKcM4lwHGPB7rlJhLluT0RBZc+ePQoEAsrJyQlbn5OTI6/X22Ybr9cb0faSVF1dLZfLFVrcbnckZSJJ+fd93bn2+w/YVElii8VxbOrksT28pljUaHefdo85FhLhnEmE4xgLds9NIsx1e4x8Mm1lZaV8Pl9o2bZtW7xLQgJwZnXuQ2zOzDSbKklssTiO2Z08tofXFIsa7e7T7jHHQiKcM4lwHGPB7rlJhLluT0RBpVevXkpNTVVjY2PY+sbGRuXm5rbZJjc3N6LtJSkjI0NOpzNsAY6lIM+lrLTUqNpmpaXq7Dz+zqTYHMfBfTvbpyvmNdrdp91jjoVEOGcS4TjGgt1zkwhz3Z6Igkp6erqGDRummpqa0LpgMKiamhqVlJS02aakpCRse0latmxZu9sD0cpKP/hExWhcOiQv9NjoZBeL42h3n8lao92o0VzJ+PfYnojf+qmoqNDChQv1xBNPaP369brpppvU3Nys8vJySVJZWZkqKytD20+bNk1Lly7VnDlztGHDBt1111169913NWXKFPtGAUiSJV07Kj+qpuUjo2vXJcXgOFqWVB5ln5NG5uuIRzjEYq5t7tP2McdCApwzCXEcY8HuuUmAuW5PxEFlwoQJ+t3vfqeqqioNGTJE9fX1Wrp0aeiG2YaGBu3cuTO0/ciRI7V48WL96U9/UlFRkZ555hm98MILKigosG8UgKSUFIcG5GbrFs8ZEbWb7jlDA3KzjfkCrniLxXFMTXFoYJR9DszNPuJL5mJRo9192j3mWEiEcyYRjmMs2D03iTDX7eG7ftAlPbJ8kx7uwBMYp3vO0LQu9J0gdovFcbS7z2St0W7UaK5E/nu04/WboIIuybIOPi768be2HnxY0WHfDnrpkDyVjzTn20FNFYvjaFkHH4m+6Ch9ThoZ2bcnx6JGO/u0e8yxkAjnTCIcx1iIxd/j8ZprggpwFIe+m2Jf68GHFfn3H5AzM01n5zlDN4bxds+xxeI4BoKWHI6DfX64w6emfV/LmdVNZ+e5lJWeKstSRJfsY1Gj3X3aPeZYSIRzJhGOYyzYPTfHa64JKgAAwFh2vH4b+cA3AAAAiaACAAAMRlABAADGIqgAAABjEVQAAICxCCoAAMBYCfH914c+Qe33++NcCQAA6KhDr9udeRJKQgSVpqYmSZLb7Y5zJQAAIFJNTU1yuVxRtU2IB74Fg0Ht2LFD2dld67HI8eL3++V2u7Vt2zYeoGcQ5sVczI2ZmBdzHZqbhoYGORwO5eXlKSUlurtNEuKKSkpKivr16xfvMrocp9PJyW0g5sVczI2ZmBdzuVyuTs8NN9MCAABjEVQAAICxCCpJKCMjQ7NmzVJGRka8S8H/YF7MxdyYiXkxl51zkxA30wIAgOTEFRUAAGAsggoAADAWQQUAABiLoAIAAIxFUOnC3nzzTY0bN055eXlyOBx64YUXwn4/adIkORyOsGXMmDHxKTZJVFdXa8SIEcrOzlbv3r01fvx4bdy4MWyb/fv3a/LkyTrppJPUvXt3XXnllWpsbIxTxcmjI3NzwQUXHHHO3HjjjXGqOHn84Q9/UGFhYejBbiUlJXr11VdDv+eciY9jzYtd5wtBpQtrbm5WUVGR5s+f3+42Y8aM0c6dO0PL3//+9+NYYfJZuXKlJk+erLffflvLli3TgQMHdMkll6i5uTm0zfTp0/XPf/5TTz/9tFauXKkdO3boiiuuiGPVyaEjcyNJN9xwQ9g588ADD8Sp4uTRr18/zZ49W3V1dXr33Xd10UUX6bLLLtNHH30kiXMmXo41L5JN54uFpCDJev7558PWTZw40brsssviUg8O2rVrlyXJWrlypWVZlrV3714rLS3Nevrpp0PbrF+/3pJk1dbWxqvMpHT43FiWZZ1//vnWtGnT4lcUQnr06GH9+c9/5pwxzKF5sSz7zheuqCS5FStWqHfv3howYIBuuukmffHFF/EuKan4fD5JUs+ePSVJdXV1OnDggDweT2ibgQMH6pRTTlFtbW1cakxWh8/NIX/729/Uq1cvFRQUqLKyUl999VU8yktagUBATz75pJqbm1VSUsI5Y4jD5+UQO86XhPhSQsTGmDFjdMUVV+i0007Tli1bdMcdd2js2LGqra1VampqvMvr8oLBoG655RaNGjVKBQUFkiSv16v09HSdeOKJYdvm5OTI6/XGocrk1NbcSNKPf/xjnXrqqcrLy9MHH3yg2267TRs3btRzzz0Xx2qTw7p161RSUqL9+/ere/fuev755zVo0CDV19dzzsRRe/Mi2Xe+EFSS2I9+9KPQfw8ePFiFhYU6/fTTtWLFCl188cVxrCw5TJ48WR9++KFWrVoV71JwmPbm5mc/+1novwcPHqw+ffro4osv1pYtW3T66acf7zKTyoABA1RfXy+fz6dnnnlGEydO1MqVK+NdVtJrb14GDRpk2/nCWz8I+fa3v61evXrpk08+iXcpXd6UKVP00ksv6Y033lC/fv1C63Nzc9Xa2qq9e/eGbd/Y2Kjc3NzjXGVyam9u2lJcXCxJnDPHQXp6uvr3769hw4apurpaRUVFeuSRRzhn4qy9eWlLtOcLQQUhn3/+ub744gv16dMn3qV0WZZlacqUKXr++ef1r3/9S6eddlrY74cNG6a0tDTV1NSE1m3cuFENDQ1h7/vCfseam7bU19dLEudMHASDQbW0tHDOGObQvLQl2vOFt366sC+//DIsuX722Weqr69Xz5491bNnT91999268sorlZubqy1btmjGjBnq37+/SktL41h11zZ58mQtXrxY//jHP5SdnR16D93lcikrK0sul0vXXXedKioq1LNnTzmdTk2dOlUlJSX6zne+E+fqu7Zjzc2WLVu0ePFiff/739dJJ52kDz74QNOnT9d5552nwsLCOFfftVVWVmrs2LE65ZRT1NTUpMWLF2vFihV67bXXOGfi6GjzYuv50unPDcFYb7zxhiXpiGXixInWV199ZV1yySXWySefbKWlpVmnnnqqdcMNN1herzfeZXdpbc2HJOvxxx8PbbNv3z7rF7/4hdWjRw/rhBNOsC6//HJr586d8Ss6SRxrbhoaGqzzzjvP6tmzp5WRkWH179/fuvXWWy2fzxffwpPAtddea5166qlWenq6dfLJJ1sXX3yx9frrr4d+zzkTH0ebFzvPF4dlWZYt0QoAAMBm3KMCAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAFwTJMmTdL48ePjXQaAJERQAQAAxiKoAIjIBRdcoJtvvlkzZsxQz549lZubq7vuuitsm7179+rnP/+5cnJylJmZqYKCAr300kuh3z/77LM6++yzlZGRofz8fM2ZMyesfX5+vu677z6VlZWpe/fuOvXUU/Xiiy9q9+7duuyyy9S9e3cVFhbq3XffDWu3atUqjR49WllZWXK73br55pvV3Nwcs2MBIPYIKgAi9sQTT+hb3/qW3nnnHT3wwAO65557tGzZMklSMBjU2LFjtXr1av31r3/Vxx9/rNmzZys1NVWSVFdXpx/+8If60Y9+pHXr1umuu+7SzJkztWjRorB9PPzwwxo1apTee+89/eAHP9A111yjsrIy/fSnP9XatWt1+umnq6ysTIe+V3XLli0aM2aMrrzySn3wwQdasmSJVq1apSlTphzXYwPAXnx7MoBjmjRpkvbu3asXXnhBF1xwgQKBgP7973+Hfn/uuefqoosu0uzZs/X6669r7NixWr9+vc4888wj+vrJT36i3bt36/XXXw+tmzFjhl5++WV99NFHkg5eURk9erT+8pe/SJK8Xq/69OmjmTNn6p577pEkvf322yopKdHOnTuVm5ur66+/XqmpqfrjH/8Y6nfVqlU6//zz1dzcrMzMzJgcGwCxxRUVABErLCwM+7lPnz7atWuXJKm+vl79+vVrM6RI0vr16zVq1KiwdaNGjdLmzZsVCATa3EdOTo4kafDgwUesO7Tf999/X4sWLVL37t1DS2lpqYLBoD777LNohwogzrrFuwAAiSctLS3sZ4fDoWAwKEnKysqyfR8Oh6PddYf2++WXX+rnP/+5br755iP6OuWUU2ypCcDxR1ABYKvCwkJ9/vnn2rRpU5tXVc466yytXr06bN3q1at15plnhu5jicY555yjjz/+WP3794+6DwDm4a0fALY6//zzdd555+nKK6/UsmXL9Nlnn+nVV1/V0qVLJUm//OUvVVNTo3vvvVebNm3SE088oXnz5ulXv/pVp/Z722236a233tKUKVNUX1+vzZs36x//+Ac30wIJjqACwHbPPvusRowYoauvvlqDBg3SjBkzQvefnHPOOXrqqaf05JNPqqCgQFVVVbrnnns0adKkTu2zsLBQK1eu1KZNmzR69GgNHTpUVVVVysvLs2FEAOKFT/0AAABjcUUFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMb6P8VL/D2laPQCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = sns.scatterplot(x = loan['Income'], \n", " y = np.where(loan['Default'] == 'No', 0, 1), \n", @@ -285,12 +497,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 64, "id": "1387c926", "metadata": { "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGwCAYAAAB7MGXBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtCklEQVR4nO3de3xU9Z3/8ffkHi4TbiUhOBp0EYhgQMD8Aqi4zppaFsXqLsuyhqa0faioQLZFUCHeg1gs7UJlpWB1W5VqvYu0MQoumnIJxBUIFwVMBBJEJBNDSCBzfn9QRgZymWu+mfB6Ph7zeJgz3+85n+/n5JC3k8kZm2VZlgAAAAyJMl0AAAA4vxFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGBUjOkCfOF2u3XgwAF17dpVNpvNdDkAAMAHlmWppqZGqampiopq/vWPiAgjBw4ckMPhMF0GAAAIQEVFhS644IJmn4+IMNK1a1dJpxZjt9sNVwMAAHzhcrnkcDg8P8ebExFh5PSvZux2O2EEAIAI09pbLHgDKwAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMiog/7QVMc7stySbVNTRq64FquepOyp4Yo8GpSUqMi5YkRXXAuwOfue59X9eqZ+c49e6aoLoTvvchVL1rcT+x0TpUc1xf1zYorWfnoM9JIDWHoleB1iJLxr4/w3VtRNo1F2l9aG/9JYwArbAsS7uqarTio31665MDqjvR6HkuMTZa4zNS9ePRaRqQ0rE+ruDMdXdLjNXsGwZq+0GXnirc7XMfQtU7X/aTk3WR0vvYNf/dHTpadyLgcxJIzaHoVSC1zL9liG7MSNVOQ9+f4bo2Iu2ai7Q+tMf+2izLstrkSEFwuVxKSkpSdXU1Nz1Dm1v03i4tem93q+NmOPtrhvPSNqiobZxed+7oNOWPvyygPoSqd/7u56G3tunZj/YFdE6CWWcwvfK3llAfKxDhOnakXXOR1oe27K+vP795ZQRohmVZ+nXRbp8uWkla9N5u2STdc13/dvF/a4E6c93DL+quuePSff7HS5L+d/dh3XNdf/0mBL0L9BzMHZeuTyqq/TongR7r7uv668NdhwPqVaDrDuWxAhGuayPSrrlI60N77q/fb2D98MMPNX78eKWmpspms+n1119vdc6aNWt0xRVXKD4+Xv/wD/+g3//+9wGUCrQdt9vSzsoany/a03713m7trKyRu/2/4Niks9c9dUw/bT/o8qsPU8f00/YD/s2Rzu1dMOdg+0GXpo7p1+R+mxLUsQ6cOlYgvWqqPl9qCdWxAhGuayPSrrlI60N776/fYaS2tlYZGRlasmSJT+P37t2rcePG6dprr1VpaalmzJihn/zkJ/rLX/7id7FAm7FJKz7aF9DUZz8ObF67cMa6k+3xuj49Wc8Xf+Hz9EDmnMmrd0Gcg//52xfKvixZvbvGn7vfpoTgWNdf1jbrDmmPAxGuayPSrrlI60M776/fYeSGG27Qo48+qptvvtmn8UuXLlW/fv20cOFCDRo0SHfddZduvfVW/epXv/K7WKCt1DU06s1P9gc0983SA6praGx9YDt05rpvueICHfOzD4HMOdOZvQv2HBxraNStwy84Z79NCfZYJ91WyL5nWttPKHsciHBdG5F2zUVaH9p7f8N+n5Hi4mI5nU6vbdnZ2SouLm52Tn19vVwul9cDaEtbD1Tr+Al3QHPrTjRq24HI/J49c939enX2uw+BzDnTmb0LxX7SenU+Z79NCfZYrroT2nbA1SbrDmWPAxGuY0faNRdpfWjv/Q17GKmsrFRycrLXtuTkZLlcLtXV1TU5p6CgQElJSZ6Hw+EId5mAF1fdyeDmHz8Rokra1pnr7hwfo9p6//oQyJxzavh774I9B9/Wn1SX+O/eo9/SOQn2WJakmiDPua/rDmWPA5obpmsj0q65SOtDe+9vu7wD65w5c1RdXe15VFRUmC4J5xl7YnB/aGZPiA1RJW3rzHXX1p9U53j/+hDInHNq+Hvvgj0HXeJj9O0ZP7RbOifBHssmqWuQ59zXdYeyxwHNDdO1EWnXXKT1ob33N+xhJCUlRVVVVV7bqqqqZLfblZiY2OSc+Ph42e12rwfQlk7f1TMQibHRuiw1Mr9nz1z33sO1fvchkDlnOrN3odjPvsO15+y3KcEey54Yq8tS7W2y7lD2OBDhOnakXXOR1of23t+wh5GsrCwVFRV5bSssLFRWVla4Dw0ELDHu1F0IA3Hj0NTvbtMdYc5c9583f6lOfvYhkDlnOrN3wZ6DTnHReqXky3P225RgjxUTZQvZ90xr+wlljwMRrmsj0q65SOtDe++v32Hk22+/VWlpqUpLSyWd+tPd0tJSlZeXSzr1K5acnBzP+Ntvv1179uzRrFmztGPHDv32t7/Vn/70J82cOTM0KwDCwZJ+PDotoKm5owKb1y6cse4qV73+ur1KOVkX+Tw9kDln8updEOfgtv93kf6yrUqHaurP3W9TQnCsv25rm3WHtMeBCNe1EWnXXKT1oZ331+8wsmnTJg0bNkzDhg2TJOXl5WnYsGGaN2+eJOngwYOeYCJJ/fr10zvvvKPCwkJlZGRo4cKF+t3vfqfs7OwQLQEIvagomwakdNUMZ3+/5s109teAlK7t6gO8/HH2upev26v0Pna/+rB83V6lp/o3Rzq3d8Gcg/Q+di1ft7fJ/TYlqGOlnjpWIL1qqj5fagnVsQIRrmsj0q65SOtDe++v3+9oGTt2rFr6OJum7q46duxYbdmyxd9DAUbZbDbNcF4qm07dhbA1M539Nb0dfE5GsM5e9yPvbFf++Mt87sPV/XspKkS9C/QcPPTWNm0u/8avcxLM+b7m0l4B9SrQdZd88U3IjhWIcF0bkXbNRVof2nN/+aA8oBWWdeo2ys9+vO/UzX/O+oTLG4emKndU+/kE0VA5c91JCd99Eu3//O0Ln/sQqt75sp/b/t+pT+0teHeHXMdPBHxOAqk5FL0KpJYnbh2i8ZenGvv+DNe1EWnXXKT1oS376+vPb8II4IPTn8tQ13Dq5j+u4ydkT/j7X1D8/Y1dkfqrmZacue4vvj6mHp1j1btrgucmSL70IVS9a3E/sdE6VHNcR2pP6KKenYI+J4HUHIpeBVrLaSa+P8N1bUTaNRdpfWir/hJGAACAUb7+/G6XNz0DAADnD8IIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADAqoDCyZMkSpaWlKSEhQZmZmdqwYUOL4xctWqQBAwYoMTFRDodDM2fO1PHjxwMqGAAAdCx+h5GVK1cqLy9P+fn52rx5szIyMpSdna1Dhw41Of6FF17Q7NmzlZ+fr7KyMi1fvlwrV67UfffdF3TxAAAg8tksy7L8mZCZmamRI0dq8eLFkiS32y2Hw6G7775bs2fPPmf8XXfdpbKyMhUVFXm2/ed//qfWr1+vdevWNXmM+vp61dfXe752uVxyOByqrq6W3W73p1wAAGCIy+VSUlJSqz+//XplpKGhQSUlJXI6nd/tICpKTqdTxcXFTc4ZNWqUSkpKPL/K2bNnj1atWqUf/OAHzR6noKBASUlJnofD4fCnTAAAEEFi/Bl8+PBhNTY2Kjk52Wt7cnKyduzY0eScf//3f9fhw4c1ZswYWZalkydP6vbbb2/x1zRz5sxRXl6e5+vTr4wAAICOJ+x/TbNmzRo9/vjj+u1vf6vNmzfr1Vdf1TvvvKNHHnmk2Tnx8fGy2+1eDwAA0DH59cpIr169FB0draqqKq/tVVVVSklJaXLO3Llzddttt+knP/mJJGnIkCGqra3Vz372M91///2KiuKviwEAOJ/5lQTi4uI0fPhwrzejut1uFRUVKSsrq8k5x44dOydwREdHS5L8fO8sAADogPx6ZUSS8vLyNGXKFI0YMUJXXnmlFi1apNraWuXm5kqScnJy1LdvXxUUFEiSxo8fr6eeekrDhg1TZmamPvvsM82dO1fjx4/3hBIAAHD+8juMTJw4UV999ZXmzZunyspKDR06VKtXr/a8qbW8vNzrlZAHHnhANptNDzzwgPbv36/vfe97Gj9+vB577LHQrQIAAEQsv+8zYoKvf6cMAADaj7DcZwQAACDUCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjAoojCxZskRpaWlKSEhQZmamNmzY0OL4o0ePatq0aerTp4/i4+N16aWXatWqVQEVDAAAOpYYfyesXLlSeXl5Wrp0qTIzM7Vo0SJlZ2dr586d6t279znjGxoa9E//9E/q3bu3XnnlFfXt21dffPGFunXrFor6AQBAhLNZlmX5MyEzM1MjR47U4sWLJUlut1sOh0N33323Zs+efc74pUuX6sknn9SOHTsUGxvr0zHq6+tVX1/v+drlcsnhcKi6ulp2u92fcgEAgCEul0tJSUmt/vz269c0DQ0NKikpkdPp/G4HUVFyOp0qLi5ucs6bb76prKwsTZs2TcnJyRo8eLAef/xxNTY2NnucgoICJSUleR4Oh8OfMgEAQATxK4wcPnxYjY2NSk5O9tqenJysysrKJufs2bNHr7zyihobG7Vq1SrNnTtXCxcu1KOPPtrscebMmaPq6mrPo6Kiwp8yAQBABPH7PSP+crvd6t27t5555hlFR0dr+PDh2r9/v5588knl5+c3OSc+Pl7x8fHhLg0AALQDfoWRXr16KTo6WlVVVV7bq6qqlJKS0uScPn36KDY2VtHR0Z5tgwYNUmVlpRoaGhQXFxdA2QAAoKPw69c0cXFxGj58uIqKijzb3G63ioqKlJWV1eSc0aNH67PPPpPb7fZs27Vrl/r06UMQAQAA/t9nJC8vT8uWLdNzzz2nsrIy3XHHHaqtrVVubq4kKScnR3PmzPGMv+OOO3TkyBFNnz5du3bt0jvvvKPHH39c06ZNC90qAABAxPL7PSMTJ07UV199pXnz5qmyslJDhw7V6tWrPW9qLS8vV1TUdxnH4XDoL3/5i2bOnKnLL79cffv21fTp03XvvfeGbhUAACBi+X2fERN8/TtlAADQfoTlPiMAAAChRhgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYFRAYWTJkiVKS0tTQkKCMjMztWHDBp/mvfTSS7LZbJowYUIghwUAAB2Q32Fk5cqVysvLU35+vjZv3qyMjAxlZ2fr0KFDLc7bt2+ffv7zn+uqq64KuFgAANDx+B1GnnrqKf30pz9Vbm6u0tPTtXTpUnXq1EkrVqxodk5jY6MmT56shx56SBdffHFQBQMAgI7FrzDS0NCgkpISOZ3O73YQFSWn06ni4uJm5z388MPq3bu3pk6d6tNx6uvr5XK5vB4AAKBj8iuMHD58WI2NjUpOTvbanpycrMrKyibnrFu3TsuXL9eyZct8Pk5BQYGSkpI8D4fD4U+ZAAAggoT1r2lqamp02223admyZerVq5fP8+bMmaPq6mrPo6KiIoxVAgAAk2L8GdyrVy9FR0erqqrKa3tVVZVSUlLOGf/5559r3759Gj9+vGeb2+0+deCYGO3cuVOXXHLJOfPi4+MVHx/vT2kAACBC+fXKSFxcnIYPH66ioiLPNrfbraKiImVlZZ0zfuDAgfr0009VWlrqedx444269tprVVpayq9fAACAf6+MSFJeXp6mTJmiESNG6Morr9SiRYtUW1ur3NxcSVJOTo769u2rgoICJSQkaPDgwV7zu3XrJknnbAcAAOcnv8PIxIkT9dVXX2nevHmqrKzU0KFDtXr1as+bWsvLyxUVxY1dAQCAb2yWZVmmi2iNy+VSUlKSqqurZbfbTZcDAAB84OvPb17CAAAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABgVUBhZsmSJ0tLSlJCQoMzMTG3YsKHZscuWLdNVV12l7t27q3v37nI6nS2OBwAA5xe/w8jKlSuVl5en/Px8bd68WRkZGcrOztahQ4eaHL9mzRpNmjRJH3zwgYqLi+VwOHT99ddr//79QRcPAAAin82yLMufCZmZmRo5cqQWL14sSXK73XI4HLr77rs1e/bsVuc3Njaqe/fuWrx4sXJycnw6psvlUlJSkqqrq2W32/0pFwAAGOLrz2+/XhlpaGhQSUmJnE7ndzuIipLT6VRxcbFP+zh27JhOnDihHj16NDumvr5eLpfL6wEAADomv8LI4cOH1djYqOTkZK/tycnJqqys9Gkf9957r1JTU70CzdkKCgqUlJTkeTgcDn/KBAAAEaRN/5pm/vz5eumll/Taa68pISGh2XFz5sxRdXW151FRUdGGVQIAgLYU48/gXr16KTo6WlVVVV7bq6qqlJKS0uLcX/7yl5o/f77ee+89XX755S2OjY+PV3x8vD+lAQCACOXXKyNxcXEaPny4ioqKPNvcbreKioqUlZXV7LwFCxbokUce0erVqzVixIjAqwUAAB2OX6+MSFJeXp6mTJmiESNG6Morr9SiRYtUW1ur3NxcSVJOTo769u2rgoICSdITTzyhefPm6YUXXlBaWprnvSVdunRRly5dQrgUAAAQifwOIxMnTtRXX32lefPmqbKyUkOHDtXq1as9b2otLy9XVNR3L7g8/fTTamho0K233uq1n/z8fD344IPBVQ8AACKe3/cZMYH7jAAAEHnCcp8RAACAUCOMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwKsZ0AW3N7bYkm1TX0KitB6rlqjspe2KMBqcmKTEu+tQgSyEZE2WztZs1+VJLqPYTCo1uS7a/1/Lp/mrVHD+hrgmxGtL3VC2WJUVHnVtLIGswue5wHbs9ncuOiP4CoXVehRHLsrSrqkYrPtqntz45oLoTjZ7nEmOjNf+WIboxI1U7gxwzPiNVPx6dpgEpXWUL8z9Ira3J11pCtZ9QrunZFmrJHZ2mgWfVEsgaTK47XMduT+eyI6K/QOjZLMuyTBfRGpfLpaSkJFVXV8tutwe8n0Xv7dKi93Y3+Vzu6DTlj78s6DFnmuHsrxnOSwOu1xehqqUjrCmQeSbXHa5jt6dz2RHRX8B3vv78Pi/eM2JZVov/gAy/qLvmjksPeszZFr23W79+b5fCkfdaW5OvtYRqP6EQTC3vlVX6PO9/dx+W2+C6w9Xz9nQuOyL6C4RPQGFkyZIlSktLU0JCgjIzM7Vhw4YWx7/88ssaOHCgEhISNGTIEK1atSqgYgPhdlvaWVnT4j8gU8f00/aDrqDHNOVX7+3WzsoauUP4D5Iva/KlllDtJxQa3ZZ2BFjLjsoapfdJ8nnO1DH9tP2AmXMZrp63p3PZEdFfILz8DiMrV65UXl6e8vPztXnzZmVkZCg7O1uHDh1qcvzHH3+sSZMmaerUqdqyZYsmTJigCRMmaOvWrUEX7xObtOKjfc0+nWyP1/XpyXq++IugxrTk2Y+bP35AWllTS7xqCdV+QsBmk54NsJbff7xPKUkJSu/TtdWxxs9luHrejs5lh0R/gbDyO4w89dRT+ulPf6rc3Fylp6dr6dKl6tSpk1asWNHk+F//+tf6/ve/r1/84hcaNGiQHnnkEV1xxRVavHhx0MX7oq6hUW9+sr/Z52+54gIdC8GYlrxZekB1DY2tD/RRa2vytZZQ7ScUQlHL7BsGtTrW9LkMV8/b07nsiOgvEF5+hZGGhgaVlJTI6XR+t4OoKDmdThUXFzc5p7i42Gu8JGVnZzc7XpLq6+vlcrm8HoHaeqBax0+4m32+X6/OIRnTkroTjdp2IPA1nC1UtbSnNX26P9haquXokdjqWNPnMlzHbk/nsiOiv0B4+RVGDh8+rMbGRiUnJ3ttT05OVmVlZZNzKisr/RovSQUFBUpKSvI8HA6HP2V6cdWdbPH5zvExqq0PfkyrdRw/EdR8r321sqZW5/+9llDtJxRqgtyXq+6kEmKjWx1n+lyGq+ft6Vx2RPQXCK92+dc0c+bMUXV1tedRUVER8L7siS3fSqW2/qQ6xwc/ptU6EmKDmu+1r1bW1Or8v9cSqv2EQtcg92VPjNHxE62/FG76XIar5+3pXHZE9BcIL7/CSK9evRQdHa2qqiqv7VVVVUpJSWlyTkpKil/jJSk+Pl52u93rEajBqUlKbOH/mPcerg3JmJYkxkbrstTA13C2UNXSntY0pG+wtSSp4khdq2NNn8twHbs9ncuOiP4C4eVXGImLi9Pw4cNVVFTk2eZ2u1VUVKSsrKwm52RlZXmNl6TCwsJmx4daYtypOyI258+bv1SnEIxpyY1DU7+7jXwItLYmX2sJ1X5CIRS1zH+3rNWxps9luHrens5lR0R/gfDy+9c0eXl5WrZsmZ577jmVlZXpjjvuUG1trXJzcyVJOTk5mjNnjmf89OnTtXr1ai1cuFA7duzQgw8+qE2bNumuu+4K3SpaYkk/Hp3W7NNVrnr9dXuVcrIuCmpMS3JHNX/8gLSyppZ41RKq/YSAZZ26w20gfjQqTZXVx7X9YE2rY42fy3D1vB2dyw6J/gJh5XcYmThxon75y19q3rx5Gjp0qEpLS7V69WrPm1TLy8t18OBBz/hRo0bphRde0DPPPKOMjAy98sorev311zV48ODQraIFUVE2DUjpqhnO/s2OWb5ur9L72IMe05SZzv4akNI1pB+a5cuafKklVPsJhegomwYGWMvAlK7afrDa5znL1+1VeqqZcxmunrenc9kR0V8gvM6rz6b59Xu79KtWPncm2DFnmunsr+lh/myKUNXSEdYUyDyT6w7XsdvTueyI6C/gO19/fp9XYcSyTt3S+dmP9526EdFZn7b5xK1DNP7y1KDH3Dg0Vbmj2u4TbkNRS6j2E6o17ais0e9bqOVHo5r+1F5/12By3eE6dns6lx0R/QV8RxhpxunPiKhrOHUjItfxE7InxOqyVPs5bzILdkxbvTTry5p8qSVU+wmFRrclm+1ULVsPVKum7qTsiTG6LDVJiXHRsqxTv9oJxRpMrjtcx25P57Ijor+AbwgjAADAKF9/frfLm54BAIDzB2EEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABgV3Odit5HTf33scrkMVwIAAHx1+ud2a3cRiYgwUlNz6gPQHA6H4UoAAIC/ampqlJSU1OzzEXHTM7fbrQMHDqhrV26v3BqXyyWHw6GKigpuEBcm9Di86G/40ePwor/fsSxLNTU1Sk1NVVRU8+8MiYhXRqKionTBBReYLiOi2O328/4iCDd6HF70N/zocXjR31NaekXkNN7ACgAAjCKMAAAAowgjHUx8fLzy8/MVHx9vupQOix6HF/0NP3ocXvTXfxHxBlYAANBx8coIAAAwijACAACMIowAAACjCCMAAMAowkiEKigo0MiRI9W1a1f17t1bEyZM0M6dO73GHD9+XNOmTVPPnj3VpUsX3XLLLaqqqjJUcWSbP3++bDabZsyY4dlGf4Ozf/9+/cd//Id69uypxMREDRkyRJs2bfI8b1mW5s2bpz59+igxMVFOp1O7d+82WHFkaWxs1Ny5c9WvXz8lJibqkksu0SOPPOL1GSH02Hcffvihxo8fr9TUVNlsNr3++utez/vSyyNHjmjy5Mmy2+3q1q2bpk6dqm+//bYNV9F+EUYi1Nq1azVt2jT97W9/U2FhoU6cOKHrr79etbW1njEzZ87UW2+9pZdffllr167VgQMH9MMf/tBg1ZFp48aN+u///m9dfvnlXtvpb+C++eYbjR49WrGxsXr33Xe1fft2LVy4UN27d/eMWbBggX7zm99o6dKlWr9+vTp37qzs7GwdP37cYOWR44knntDTTz+txYsXq6ysTE888YQWLFig//qv//KMoce+q62tVUZGhpYsWdLk8770cvLkydq2bZsKCwv19ttv68MPP9TPfvaztlpC+2ahQzh06JAlyVq7dq1lWZZ19OhRKzY21nr55Zc9Y8rKyixJVnFxsakyI05NTY3Vv39/q7Cw0Lrmmmus6dOnW5ZFf4N17733WmPGjGn2ebfbbaWkpFhPPvmkZ9vRo0et+Ph468UXX2yLEiPeuHHjrB//+Mde2374wx9akydPtiyLHgdDkvXaa695vvall9u3b7ckWRs3bvSMeffddy2bzWbt37+/zWpvr3hlpIOorq6WJPXo0UOSVFJSohMnTsjpdHrGDBw4UBdeeKGKi4uN1BiJpk2bpnHjxnn1UaK/wXrzzTc1YsQI/cu//It69+6tYcOGadmyZZ7n9+7dq8rKSq/+JiUlKTMzk/76aNSoUSoqKtKuXbskSZ988onWrVunG264QRI9DiVfellcXKxu3bppxIgRnjFOp1NRUVFav359m9fc3kTEB+WhZW63WzNmzNDo0aM1ePBgSVJlZaXi4uLUrVs3r7HJycmqrKw0UGXkeemll7R582Zt3LjxnOfob3D27Nmjp59+Wnl5ebrvvvu0ceNG3XPPPYqLi9OUKVM8PUxOTvaaR399N3v2bLlcLg0cOFDR0dFqbGzUY489psmTJ0sSPQ4hX3pZWVmp3r17ez0fExOjHj160G8RRjqEadOmaevWrVq3bp3pUjqMiooKTZ8+XYWFhUpISDBdTofjdrs1YsQIPf7445KkYcOGaevWrVq6dKmmTJliuLqO4U9/+pP++Mc/6oUXXtBll12m0tJSzZgxQ6mpqfQY7Q6/polwd911l95++2198MEHuuCCCzzbU1JS1NDQoKNHj3qNr6qqUkpKShtXGXlKSkp06NAhXXHFFYqJiVFMTIzWrl2r3/zmN4qJiVFycjL9DUKfPn2Unp7utW3QoEEqLy+XJE8Pz/7rJPrru1/84heaPXu2/u3f/k1DhgzRbbfdppkzZ6qgoEASPQ4lX3qZkpKiQ4cOeT1/8uRJHTlyhH6LMBKxLMvSXXfdpddee03vv/+++vXr5/X88OHDFRsbq6KiIs+2nTt3qry8XFlZWW1dbsS57rrr9Omnn6q0tNTzGDFihCZPnuz5b/obuNGjR5/zp+i7du3SRRddJEnq16+fUlJSvPrrcrm0fv16+uujY8eOKSrK+5/46Ohoud1uSfQ4lHzpZVZWlo4ePaqSkhLPmPfff19ut1uZmZltXnO7Y/odtAjMHXfcYSUlJVlr1qyxDh486HkcO3bMM+b222+3LrzwQuv999+3Nm3aZGVlZVlZWVkGq45sZ/41jWXR32Bs2LDBiomJsR577DFr9+7d1h//+EerU6dO1h/+8AfPmPnz51vdunWz3njjDev//u//rJtuusnq16+fVVdXZ7DyyDFlyhSrb9++1ttvv23t3bvXevXVV61evXpZs2bN8oyhx76rqamxtmzZYm3ZssWSZD311FPWli1brC+++MKyLN96+f3vf98aNmyYtX79emvdunVW//79rUmTJplaUrtCGIlQkpp8PPvss54xdXV11p133ml1797d6tSpk3XzzTdbBw8eNFd0hDs7jNDf4Lz11lvW4MGDrfj4eGvgwIHWM8884/W82+225s6dayUnJ1vx8fHWddddZ+3cudNQtZHH5XJZ06dPty688EIrISHBuvjii63777/fqq+v94yhx7774IMPmvw3d8qUKZZl+dbLr7/+2po0aZLVpUsXy263W7m5uVZNTY2B1bQ/Nss643Z8AAAAbYz3jAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCNAB/OjH/1IEyZMMF1GswoKChQdHa0nn3zSdCl+s9lsev31102XAXQ4hBEAbWrFihWaNWuWVqxYYboUAO0EYQQ4z6xdu1ZXXnml4uPj1adPH82ePVsnT570PL969WqNGTNG3bp1U8+ePfXP//zP+vzzzz3P79u3TzabTa+++qquvfZaderUSRkZGSouLvbp2HV1dXr44Yflcrn08ccfez3/4IMPaujQoVqxYoUuvPBCdenSRXfeeacaGxu1YMECpaSkqHfv3nrssce85pWXl+umm25Sly5dZLfb9a//+q+qqqryPN/Uq0UzZszQ2LFjPV+PHTtW99xzj2bNmqUePXooJSVFDz74oOf5tLQ0SdLNN98sm83m+RpA8AgjwHlk//79+sEPfqCRI0fqk08+0dNPP63ly5fr0Ucf9Yypra1VXl6eNm3apKKiIkVFRenmm2+W2+322tf999+vn//85yotLdWll16qSZMmeYWapixfvlyTJk1SbGysJk2apOXLl58z5vPPP9e7776r1atX68UXX9Ty5cs1btw4ffnll1q7dq2eeOIJPfDAA1q/fr0kye1266abbtKRI0e0du1aFRYWas+ePZo4caLf/XnuuefUuXNnrV+/XgsWLNDDDz+swsJCSdLGjRslSc8++6wOHjzo+RpACJj+2GAAoTVlyhTrpptuavK5++67zxowYIDldrs925YsWWJ16dLFamxsbHLOV199ZUmyPv30U8uyLGvv3r2WJOt3v/udZ8y2bdssSVZZWVmzdVVXV1uJiYlWaWmpZVmWtWXLFqtLly5eH6Gen59vderUyXK5XJ5t2dnZVlpamld9AwYMsAoKCizLsqy//vWvVnR0tFVeXn5OPRs2bGi2J9OnT7euueYaz9fXXHONNWbMGK8xI0eOtO69917P15Ks1157rdk1AggMr4wA55GysjJlZWXJZrN5to0ePVrffvutvvzyS0nS7t27NWnSJF188cWy2+2eX0eUl5d77evyyy/3/HefPn0kSYcOHWr22C+++KIuueQSZWRkSJKGDh2qiy66SCtXrvQal5aWpq5du3q+Tk5OVnp6uqKiory2nT5WWVmZHA6HHA6H5/n09HR169ZNZWVlrTelmTWdXldLawIQGoQRAF7Gjx+vI0eOaNmyZVq/fr3n1yENDQ1e42JjYz3/fTrcnP2rnDMtX75c27ZtU0xMjOexffv2c97IeuZ+T++7qW0tHetsUVFRsizLa9uJEyfOGRfscQAEJsZ0AQDazqBBg/TnP/9ZlmV5AsRHH32krl276oILLtDXX3+tnTt3atmyZbrqqqskSevWrQv6uJ9++qk2bdqkNWvWqEePHp7tR44c0dixY7Vjxw4NHDgw4DVVVFSooqLC8+rI9u3bdfToUaWnp0uSvve972nr1q1e80pLS88JH62JjY1VY2NjQHUCaB6vjAAdUHV1tUpLS70eFRUVuvPOO1VRUaG7775bO3bs0BtvvKH8/Hzl5eUpKipK3bt3V8+ePfXMM8/os88+0/vvv6+8vLyg61m+fLmuvPJKXX311Ro8eLDncfXVV2vkyJFNvpHVV06nU0OGDNHkyZO1efNmbdiwQTk5Obrmmms0YsQISdI//uM/atOmTXr++ee1e/du5efnnxNOfJGWlqaioiJVVlbqm2++CbhmAN4II0AHtGbNGg0bNszr8dBDD6lv375atWqVNmzYoIyMDN1+++2aOnWqHnjgAUmnfp3x0ksvqaSkRIMHD9bMmTODvjlZQ0OD/vCHP+iWW25p8vlbbrlFzz//fJO/NvGFzWbTG2+8oe7du+vqq6+W0+nUxRdf7PVelOzsbM2dO1ezZs3SyJEjVVNTo5ycHL+PtXDhQhUWFsrhcGjYsGEB1QvgXDbr7F+kAgAAtCFeGQEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGDU/wcJveBC9O6zrgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = sns.scatterplot(x = loan['Loan Amount'], \n", " y = np.where(loan['Default'] == 'No', 0, 1), \n", @@ -333,7 +556,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "id": "a570e61b", "metadata": { "scrolled": false @@ -353,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 66, "id": "1fda732e", "metadata": { "scrolled": false @@ -373,7 +596,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 67, "id": "cd01aaca", "metadata": {}, "outputs": [], @@ -399,7 +622,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "id": "346cdb9d", "metadata": {}, "outputs": [], @@ -428,12 +651,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 69, "id": "66162c9a", "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(21, 2)" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "X_train.shape" ] @@ -450,10 +684,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 70, "id": "20c26601", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(9, 2)" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "X_test.shape" ] @@ -484,7 +729,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "id": "69e53d51", "metadata": {}, "outputs": [], @@ -502,7 +747,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "id": "263345cf", "metadata": {}, "outputs": [], @@ -520,7 +765,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 73, "id": "eafcb43f", "metadata": { "scrolled": true @@ -540,10 +785,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "id": "7332d1bc", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'Yes'],\n", + " dtype=object)" + ] + }, + "execution_count": 74, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "model.predict(X_test)" ] @@ -560,12 +817,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "id": "20fa1a33", "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.8888888888888888" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "model.score(X_test, y_test)" ] @@ -590,7 +858,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "id": "c1b722a1", "metadata": {}, "outputs": [], @@ -608,10 +876,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 77, "id": "3cba5859", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3, 1],\n", + " [0, 5]])" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "confusion_matrix(y_test, model.predict(X_test))" ] @@ -684,13 +964,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 78, "id": "1dc049cf", "metadata": { "scrolled": true }, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "array([15.4670632])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.intercept_" + ] }, { "cell_type": "markdown", @@ -702,11 +995,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "id": "a5273286", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-1.0178107 , 0.14656096]])" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.coef_" + ] }, { "cell_type": "markdown", @@ -728,11 +1034,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 81, "id": "c89d0a08", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.02, 0.15])" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "log_odds = np.round(model.coef_[0],2)\n", + "log_odds" + ] }, { "cell_type": "markdown", @@ -744,13 +1064,63 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 82, "id": "556a5e49", "metadata": { "scrolled": false }, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Log Odds
Income-1.02
Loan Amount0.15
\n", + "
" + ], + "text/plain": [ + " Log Odds\n", + "Income -1.02\n", + "Loan Amount 0.15" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DataFrame({\"Log Odds\": log_odds}, index= x.columns)" + ] }, { "cell_type": "markdown", @@ -766,13 +1136,64 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "id": "f5bd37c6", "metadata": { "scrolled": true }, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Odds
Income0.36
Loan Amount1.16
\n", + "
" + ], + "text/plain": [ + " Odds\n", + "Income 0.36\n", + "Loan Amount 1.16" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "odds = np.round(np.exp(log_odds),2)\n", + "pd.DataFrame({\"Odds\":odds}, index= x.columns)" + ] }, { "cell_type": "markdown", diff --git a/src/03e.ipynb b/src/03e.ipynb index 3bd6d84..9c95946 100644 --- a/src/03e.ipynb +++ b/src/03e.ipynb @@ -817,7 +817,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.10.13" } }, "nbformat": 4,