-
Notifications
You must be signed in to change notification settings - Fork 208
/
Copy pathstart.py
176 lines (152 loc) · 8.47 KB
/
start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import argparse
import os
from time import time
import align.detect_face as detect_face
import cv2
import numpy as np
import tensorflow as tf
from lib.face_utils import judge_side_face
from lib.utils import Logger, mkdir
from project_root_dir import project_dir
from src.sort import Sort
logger = Logger()
def main():
global colours, img_size
args = parse_args()
videos_dir = args.videos_dir
output_path = args.output_path
no_display = args.no_display
detect_interval = args.detect_interval # you need to keep a balance between performance and fluency
margin = args.margin # if the face is big in your video ,you can set it bigger for tracking easiler
scale_rate = args.scale_rate # if set it smaller will make input frames smaller
show_rate = args.show_rate # if set it smaller will dispaly smaller frames
face_score_threshold = args.face_score_threshold
mkdir(output_path)
# for display
if not no_display:
colours = np.random.rand(32, 3)
# init tracker
tracker = Sort() # create instance of the SORT tracker
logger.info('Start track and extract......')
with tf.Graph().as_default():
with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True),
log_device_placement=False)) as sess:
pnet, rnet, onet = detect_face.create_mtcnn(sess, os.path.join(project_dir, "align"))
minsize = 40 # minimum size of face for mtcnn to detect
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
for filename in os.listdir(videos_dir):
logger.info('All files:{}'.format(filename))
for filename in os.listdir(videos_dir):
suffix = filename.split('.')[1]
if suffix != 'mp4' and suffix != 'avi': # you can specify more video formats if you need
continue
video_name = os.path.join(videos_dir, filename)
directoryname = os.path.join(output_path, filename.split('.')[0])
logger.info('Video_name:{}'.format(video_name))
cam = cv2.VideoCapture(video_name)
c = 0
while True:
final_faces = []
addtional_attribute_list = []
ret, frame = cam.read()
if not ret:
logger.warning("ret false")
break
if frame is None:
logger.warning("frame drop")
break
frame = cv2.resize(frame, (0, 0), fx=scale_rate, fy=scale_rate)
r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if c % detect_interval == 0:
img_size = np.asarray(frame.shape)[0:2]
mtcnn_starttime = time()
faces, points = detect_face.detect_face(r_g_b_frame, minsize, pnet, rnet, onet, threshold,
factor)
logger.info("MTCNN detect face cost time : {} s".format(
round(time() - mtcnn_starttime, 3))) # mtcnn detect ,slow
face_sums = faces.shape[0]
if face_sums > 0:
face_list = []
for i, item in enumerate(faces):
score = round(faces[i, 4], 6)
if score > face_score_threshold:
det = np.squeeze(faces[i, 0:4])
# face rectangle
det[0] = np.maximum(det[0] - margin, 0)
det[1] = np.maximum(det[1] - margin, 0)
det[2] = np.minimum(det[2] + margin, img_size[1])
det[3] = np.minimum(det[3] + margin, img_size[0])
face_list.append(item)
# face cropped
bb = np.array(det, dtype=np.int32)
# use 5 face landmarks to judge the face is front or side
squeeze_points = np.squeeze(points[:, i])
tolist = squeeze_points.tolist()
facial_landmarks = []
for j in range(5):
item = [tolist[j], tolist[(j + 5)]]
facial_landmarks.append(item)
if args.face_landmarks:
for (x, y) in facial_landmarks:
cv2.circle(frame, (int(x), int(y)), 3, (0, 255, 0), -1)
cropped = frame[bb[1]:bb[3], bb[0]:bb[2], :].copy()
dist_rate, high_ratio_variance, width_rate = judge_side_face(
np.array(facial_landmarks))
# face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
item_list = [cropped, score, dist_rate, high_ratio_variance, width_rate]
addtional_attribute_list.append(item_list)
final_faces = np.array(face_list)
trackers = tracker.update(final_faces, img_size, directoryname, addtional_attribute_list, detect_interval)
c += 1
for d in trackers:
if not no_display:
d = d.astype(np.int32)
cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]), colours[d[4] % 32, :] * 255, 3)
if final_faces != []:
cv2.putText(frame, 'ID : %d DETECT' % (d[4]), (d[0] - 10, d[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.75,
colours[d[4] % 32, :] * 255, 2)
cv2.putText(frame, 'DETECTOR', (5, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
(1, 1, 1), 2)
else:
cv2.putText(frame, 'ID : %d' % (d[4]), (d[0] - 10, d[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.75,
colours[d[4] % 32, :] * 255, 2)
if not no_display:
frame = cv2.resize(frame, (0, 0), fx=show_rate, fy=show_rate)
cv2.imshow("Frame", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--videos_dir", type=str,
help='Path to the data directory containing aligned your face patches.', default='videos')
parser.add_argument('--output_path', type=str,
help='Path to save face',
default='facepics')
parser.add_argument('--detect_interval',
help='how many frames to make a detection',
type=int, default=1)
parser.add_argument('--margin',
help='add margin for face',
type=int, default=10)
parser.add_argument('--scale_rate',
help='Scale down or enlarge the original video img',
type=float, default=0.7)
parser.add_argument('--show_rate',
help='Scale down or enlarge the imgs drawn by opencv',
type=float, default=1)
parser.add_argument('--face_score_threshold',
help='The threshold of the extracted faces,range 0<x<=1',
type=float, default=0.85)
parser.add_argument('--face_landmarks',
help='Draw five face landmarks on extracted face or not ', action="store_true")
parser.add_argument('--no_display',
help='Display or not', action='store_true')
args = parser.parse_args()
return args
if __name__ == '__main__':
main()