-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain3.py
168 lines (155 loc) · 6 KB
/
train3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
""""
With admiration for and inspiration from:
https://github.com/dolaameng/Udacity-SDC_Behavior-Cloning/
https://devblogs.nvidia.com/parallelforall/deep-learning-self-driving-cars/
https://chatbotslife.com/using-augmentation-to-mimic-human-driving-496b569760a9
https://www.reddit.com/r/MachineLearning/comments/5qbjz7/p_an_autonomous_vehicle_steering_model_in_99/dcyphps/
https://medium.com/@harvitronix/training-a-deep-learning-model-to-steer-a-car-in-99-lines-of-code-ba94e0456e6a
"""
import os
import csv, random, numpy as np, re
import argparse
from keras.models import load_model, Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.preprocessing.image import img_to_array, load_img, flip_axis, random_shift
from keras.utils import to_categorical
from sklearn.model_selection import train_test_split
from PIL import Image
import PIL
from PIL import ImageOps
from skimage.exposure import equalize_adapthist
oshapeX = 640
oshapeY = 240
NUM_CLASSES = 3
shapeX = 320
shapeY = 120
cshapeY = 120
def model(load, shape, tr_model=None):
"""Return a model from file or to train on."""
if load and tr_model: return load_model(tr_model)
# conv5x5_l, conv3x3_l, dense_layers = [16, 24], [36, 48], [512, 128, 16]
conv3x3_l, dense_layers = [24, 32, 40, 48], [512, 64, 16]
model = Sequential()
model.add(Conv2D(16, (5, 5), activation='elu', input_shape=shape))
model.add(MaxPooling2D())
for i in range(len(conv3x3_l)):
model.add(Conv2D(conv3x3_l[i], (3, 3), activation='elu'))
if i < len(conv3x3_l) - 1:
model.add(MaxPooling2D())
model.add(Flatten())
for dl in dense_layers:
model.add(Dense(dl, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(NUM_CLASSES, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer="adam", metrics=['accuracy'])
return model
def get_X_y(data_file):
"""Read the log file and turn it into X/y pairs. Add an offset to left images, remove from right images."""
X, y = [], []
with open(data_file) as fin:
reader = csv.reader(fin)
next(reader, None)
for img, command in reader:
X.append(img.strip())
y.append(int(command))
return X, to_categorical(y, num_classes=NUM_CLASSES)
def process_image(file_name, shape=(shapeY, shapeX)):
"""Process and augment an image."""
folder_name = ""
image = load_img(file_name, target_size=shape)
aimage = img_to_array(image)
aimage = aimage.astype(np.float32) / 255.
aimage = aimage - 0.5
return aimage
def _generator(batch_size, classes, X, y):
"""Generate batches of training data forever."""
while 1:
batch_X, batch_y = [], []
for i in range(batch_size):
class_i = random.randint(0, NUM_CLASSES - 1)
sample_index = random.choice(classes[class_i])
command = y[sample_index]
image = process_image(img_dir + X[sample_index])
batch_X.append(image)
batch_y.append(command)
yield np.array(batch_X), np.array(batch_y)
def train(model_name, val_split, epoch_num, step_num):
"""Load our network and our data, fit the model, save it."""
if model_name:
net = model(load=True, shape=(cshapeY, shapeX, 3), tr_model=model_name)
else:
net = model(load=False, shape=(cshapeY, shapeX, 3))
net.summary()
X, y = get_X_y(data_dir + args.img_dir + '_log.csv')
# print("X\n", X[:10], "y\n", y[:10])
Xtr, Xval, ytr, yval = train_test_split(X, y, test_size=val_split, random_state=random.randint(0, 100))
tr_classes = [[] for _ in range(NUM_CLASSES)]
for i in range(len(ytr)):
for j in range(NUM_CLASSES):
if ytr[i][j]:
tr_classes[j].append(i)
val_classes = [[] for _ in range(NUM_CLASSES)]
for i in range(len(yval)):
for j in range(NUM_CLASSES):
if yval[i][j]:
val_classes[j].append(i)
net.fit_generator(_generator(batch_size, tr_classes, Xtr, ytr),\
validation_data=_generator(batch_size, val_classes, Xval, yval),\
validation_steps=max(len(Xval) // batch_size, 1), steps_per_epoch=1, epochs=1)
net.fit_generator(_generator(batch_size, tr_classes, Xtr, ytr),\
validation_data=_generator(batch_size, val_classes, Xval, yval),\
validation_steps=max(len(Xval) // batch_size, 1), steps_per_epoch=step_num, epochs=epoch_num)
if not os.path.exists(model_dir):
os.mkdir(model_dir)
net.save(model_dir + args.img_dir + "_" + str(step_num) + "-" + str(epoch_num) + "_" + str(batch_size) + "_" \
+ str(shapeX) + "x" + str(shapeY) + '.h5')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Trainer')
parser.add_argument(
'img_dir',
type=str,
help='Name of the training set folder. Default: ts_0',
default="ts_0"
)
parser.add_argument(
'steps',
type=int,
help='Training steps. Default: 200',
default=200
)
parser.add_argument(
'-batch',
type=int,
help='Batch size. Default: 64',
default=64
)
parser.add_argument(
'-model',
type=str,
default='',
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'-valid',
type=float,
default=0.15,
help='Validation fraction of data. Default: 0.15'
)
parser.add_argument(
'-epoch',
type=int,
default=1,
help='Number of training epochs. Default: 1'
)
args = parser.parse_args()
batch_size = args.batch
data_dir = "./model_data/"
pos = args.img_dir.find("_s_")
if pos > 0:
img_dir = "./data_sets/" + args.img_dir[:pos] + "/" + "data/"
else:
img_dir = "./data_sets/" + args.img_dir + "/" + "data/"
model_dir = "./models/"
train(args.model, args.valid, args.epoch, args.steps)