-
Notifications
You must be signed in to change notification settings - Fork 205
/
eval_w.py
87 lines (65 loc) · 3 KB
/
eval_w.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from __future__ import print_function
import datetime
import time
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim
import codecs
from model.crf import *
from model.lstm_crf import *
import model.utils as utils
from model.evaluator import eval_w
import argparse
import json
import os
import sys
from tqdm import tqdm
import itertools
import functools
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Evaluating BLSTM-CRF')
parser.add_argument('--load_arg', default='./checkpoint/soa/check_wc_p_char_lstm_crf.json', help='arg json file path')
parser.add_argument('--load_check_point', default='./checkpoint/soa/check_wc_p_char_lstm_crf.model', help='checkpoint path')
parser.add_argument('--gpu',type=int, default=0, help='gpu id')
parser.add_argument('--eva_matrix', choices=['a', 'fa'], default='fa', help='use f1 and accuracy or accuracy alone')
parser.add_argument('--test_file', default='', help='path to test file, if set to none, would use test_file path in the checkpoint file')
args = parser.parse_args()
with open(args.load_arg, 'r') as f:
jd = json.load(f)
jd = jd['args']
checkpoint_file = torch.load(args.load_check_point, map_location=lambda storage, loc: storage)
f_map = checkpoint_file['f_map']
l_map = checkpoint_file['l_map']
if args.gpu >= 0:
torch.cuda.set_device(args.gpu)
# load corpus
if args.test_file:
with codecs.open(args.test_file, 'r', 'utf-8') as f:
test_lines = f.readlines()
else:
with codecs.open(jd['test_file'], 'r', 'utf-8') as f:
test_lines = f.readlines()
# converting format
test_features, test_labels = utils.read_corpus(test_lines)
# construct dataset
test_dataset = utils.construct_bucket_mean_vb(test_features, test_labels, f_map, l_map, jd['caseless'])
test_dataset_loader = [torch.utils.data.DataLoader(tup, 50, shuffle=False, drop_last=False) for tup in test_dataset]
# build model
ner_model = LSTM_CRF(len(f_map), len(l_map), jd['embedding_dim'], jd['hidden'], jd['layers'], jd['drop_out'], large_CRF=jd['small_crf'])
ner_model.load_state_dict(checkpoint_file['state_dict'])
if args.gpu >= 0:
if_cuda = True
torch.cuda.set_device(args.gpu)
ner_model.cuda()
packer = CRFRepack(len(l_map), True)
else:
if_cuda = False
packer = CRFRepack(len(l_map), False)
evaluator = eval_w(packer, l_map, args.eva_matrix)
if 'f' in args.eva_matrix:
test_f1, test_pre, test_rec, test_acc = evaluator.calc_score(ner_model, test_dataset_loader)
print(jd['checkpoint'] + ' test_f1: %.4f test_rec: %.4f test_pre: %.4f test_acc: %.4f\n' % (test_f1, test_rec, test_pre, test_acc))
else:
test_acc = evaluator.calc_score(ner_model, test_dataset_loader)
print(jd['checkpoint'] + ' test_acc: %.4f\n' % (test_acc))