Skip to content

Latest commit

 

History

History
151 lines (95 loc) · 7.41 KB

training.md

File metadata and controls

151 lines (95 loc) · 7.41 KB

PP-OCR模型训练

本文将介绍模型训练时需掌握的基本概念,和训练时的调优方法。

同时会简单介绍PaddleOCR模型训练数据的组成部分,以及如何在垂类场景中准备数据finetune模型。

1. 配置文件说明

PaddleOCR模型使用配置文件管理网络训练、评估的参数。在配置文件中,可以设置组建模型、优化器、损失函数、模型前后处理的参数,PaddleOCR从配置文件中读取到这些参数,进而组建出完整的训练流程,完成模型训练,在需要对模型进行优化的时,可以通过修改配置文件中的参数完成配置,使用简单且方便修改。

完整的配置文件说明可以参考配置文件

2. 基本概念

模型训练过程中需要手动调整一些超参数,帮助模型以最小的代价获得最优指标。不同的数据量可能需要不同的超参,当您希望在自己的数据上finetune或对模型效果调优时,有以下几个参数调整策略可供参考:

2.1 学习率

学习率是训练神经网络的重要超参数之一,它代表在每一次迭代中梯度向损失函数最优解移动的步长。 在PaddleOCR中提供了多种学习率更新策略,可以通过配置文件修改,例如:

Optimizer:
  ...
  lr:
    name: Piecewise
    decay_epochs : [700, 800]
    values : [0.001, 0.0001]
    warmup_epoch: 5

Piecewise 代表分段常数衰减,在不同的学习阶段指定不同的学习率,在每段内学习率相同。 warmup_epoch 代表在前5个epoch中,学习率将逐渐从0增加到base_lr。全部策略可以参考代码learning_rate.py

2.2 正则化

正则化可以有效的避免算法过拟合,PaddleOCR中提供了L1、L2正则方法,L1 和 L2 正则化是最常用的正则化方法。L1 正则化向目标函数添加正则化项,以减少参数的绝对值总和;而 L2 正则化中,添加正则化项的目的在于减少参数平方的总和。配置方法如下:

Optimizer:
  ...
  regularizer:
    name: L2
    factor: 2.0e-05

2.3 评估指标

(1)检测阶段:先按照检测框和标注框的IOU评估,IOU大于某个阈值判断为检测准确。这里检测框和标注框不同于一般的通用目标检测框,是采用多边形进行表示。检测准确率:正确的检测框个数在全部检测框的占比,主要是判断检测指标。检测召回率:正确的检测框个数在全部标注框的占比,主要是判断漏检的指标。

(2)识别阶段: 字符识别准确率,即正确识别的文本行占标注的文本行数量的比例,只有整行文本识别对才算正确识别。

(3)端到端统计: 端对端召回率:准确检测并正确识别文本行在全部标注文本行的占比; 端到端准确率:准确检测并正确识别文本行在 检测到的文本行数量 的占比; 准确检测的标准是检测框与标注框的IOU大于某个阈值,正确识别的检测框中的文本与标注的文本相同。

3. 数据与垂类场景

3.1 训练数据

目前开源的模型,数据集和量级如下:

- 检测:
    - 英文数据集,ICDAR2015
    - 中文数据集,LSVT街景数据集训练数据3w张图片

- 识别:
    - 英文数据集,MJSynth和SynthText合成数据,数据量上千万。
    - 中文数据集,LSVT街景数据集根据真值将图crop出来,并进行位置校准,总共30w张图像。此外基于LSVT的语料,合成数据500w。
    - 小语种数据集,使用不同语料和字体,分别生成了100w合成数据集,并使用ICDAR-MLT作为验证集。

其中,公开数据集都是开源的,用户可自行搜索下载,也可参考中文数据集,合成数据暂不开源,用户可使用开源合成工具自行合成,可参考的合成工具包括text_rendererSynthTextTextRecognitionDataGenerator 等。

3.2 垂类场景

PaddleOCR主要聚焦通用OCR,如果有垂类需求,您可以用PaddleOCR+垂类数据自己训练; 如果缺少带标注的数据,或者不想投入研发成本,建议直接调用开放的API,开放的API覆盖了目前比较常见的一些垂类。

3.3 自己构建数据集

在构建数据集时有几个经验可供参考:

(1) 训练集的数据量:

a. 检测需要的数据相对较少,在PaddleOCR模型的基础上进行Fine-tune,一般需要500张可达到不错的效果。
b. 识别分英文和中文,一般英文场景需要几十万数据可达到不错的效果,中文则需要几百万甚至更多。

(2)当训练数据量少时,可以尝试以下三种方式获取更多的数据:

a. 人工采集更多的训练数据,最直接也是最有效的方式。
b. 基于PIL和opencv基本图像处理或者变换。例如PIL中ImageFont, Image, ImageDraw三个模块将文字写到背景中,opencv的旋转仿射变换,高斯滤波等。
c. 利用数据生成算法合成数据,例如pix2pix或[StyleText](https://github.com/PFCCLab/StyleText)等算法。

4. 常见问题

Q:训练CRNN识别时,如何选择合适的网络输入shape?

A:一般高度采用32,最长宽度的选择,有两种方法:

(1)统计训练样本图像的宽高比分布。最大宽高比的选取考虑满足80%的训练样本。

(2)统计训练样本文字数目。最长字符数目的选取考虑满足80%的训练样本。然后中文字符长宽比近似认为是1,英文认为3:1,预估一个最长宽度。

Q:识别训练时,训练集精度已经到达90了,但验证集精度一直在70,涨不上去怎么办?

A:训练集精度90,测试集70多的话,应该是过拟合了,有两个可尝试的方法:

(1)加入更多的增广方式或者调大增广prob的[概率](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/rec_img_aug.py#L341),默认为0.4。

(2)调大系统的[l2 dcay值](https://github.com/PaddlePaddle/PaddleOCR/blob/a501603d54ff5513fc4fc760319472e59da25424/configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml#L47)

Q: 识别模型训练时,loss能正常下降,但acc一直为0

A:识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。

具体的训练教程可点击下方链接跳转: