forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_can_head.py
338 lines (276 loc) · 11.3 KB
/
rec_can_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is refer from:
https://github.com/LBH1024/CAN/models/can.py
https://github.com/LBH1024/CAN/models/counting.py
https://github.com/LBH1024/CAN/models/decoder.py
https://github.com/LBH1024/CAN/models/attention.py
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.nn as nn
import paddle
import math
"""
Counting Module
"""
class ChannelAtt(nn.Layer):
def __init__(self, channel, reduction):
super(ChannelAtt, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2D(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction),
nn.ReLU(),
nn.Linear(channel // reduction, channel),
nn.Sigmoid(),
)
def forward(self, x):
b, c, _, _ = x.shape
y = paddle.reshape(self.avg_pool(x), [b, c])
y = paddle.reshape(self.fc(y), [b, c, 1, 1])
return x * y
class CountingDecoder(nn.Layer):
def __init__(self, in_channel, out_channel, kernel_size):
super(CountingDecoder, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.trans_layer = nn.Sequential(
nn.Conv2D(
self.in_channel,
512,
kernel_size=kernel_size,
padding=kernel_size // 2,
bias_attr=False,
),
nn.BatchNorm2D(512),
)
self.channel_att = ChannelAtt(512, 16)
self.pred_layer = nn.Sequential(
nn.Conv2D(512, self.out_channel, kernel_size=1, bias_attr=False),
nn.Sigmoid(),
)
def forward(self, x, mask):
b, _, h, w = x.shape
x = self.trans_layer(x)
x = self.channel_att(x)
x = self.pred_layer(x)
if mask is not None:
x = x * mask
x = paddle.reshape(x, [b, self.out_channel, -1])
x1 = paddle.sum(x, axis=-1)
return x1, paddle.reshape(x, [b, self.out_channel, h, w])
"""
Attention Decoder
"""
class PositionEmbeddingSine(nn.Layer):
def __init__(
self, num_pos_feats=64, temperature=10000, normalize=False, scale=None
):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, x, mask):
y_embed = paddle.cumsum(mask, 1, dtype="float32")
x_embed = paddle.cumsum(mask, 2, dtype="float32")
if self.normalize:
eps = 1e-6
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
dim_t = paddle.arange(self.num_pos_feats, dtype="float32")
dim_d = paddle.expand(paddle.to_tensor(2), dim_t.shape)
dim_t = self.temperature ** (
2 * (dim_t / dim_d).astype("int64") / self.num_pos_feats
)
pos_x = paddle.unsqueeze(x_embed, [3]) / dim_t
pos_y = paddle.unsqueeze(y_embed, [3]) / dim_t
pos_x = paddle.flatten(
paddle.stack(
[paddle.sin(pos_x[:, :, :, 0::2]), paddle.cos(pos_x[:, :, :, 1::2])],
axis=4,
),
3,
)
pos_y = paddle.flatten(
paddle.stack(
[paddle.sin(pos_y[:, :, :, 0::2]), paddle.cos(pos_y[:, :, :, 1::2])],
axis=4,
),
3,
)
pos = paddle.transpose(paddle.concat([pos_y, pos_x], axis=3), [0, 3, 1, 2])
return pos
class AttDecoder(nn.Layer):
def __init__(
self,
ratio,
is_train,
input_size,
hidden_size,
encoder_out_channel,
dropout,
dropout_ratio,
word_num,
counting_decoder_out_channel,
attention,
):
super(AttDecoder, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.out_channel = encoder_out_channel
self.attention_dim = attention["attention_dim"]
self.dropout_prob = dropout
self.ratio = ratio
self.word_num = word_num
self.counting_num = counting_decoder_out_channel
self.is_train = is_train
self.init_weight = nn.Linear(self.out_channel, self.hidden_size)
self.embedding = nn.Embedding(self.word_num, self.input_size)
self.word_input_gru = nn.GRUCell(self.input_size, self.hidden_size)
self.word_attention = Attention(hidden_size, attention["attention_dim"])
self.encoder_feature_conv = nn.Conv2D(
self.out_channel,
self.attention_dim,
kernel_size=attention["word_conv_kernel"],
padding=attention["word_conv_kernel"] // 2,
)
self.word_state_weight = nn.Linear(self.hidden_size, self.hidden_size)
self.word_embedding_weight = nn.Linear(self.input_size, self.hidden_size)
self.word_context_weight = nn.Linear(self.out_channel, self.hidden_size)
self.counting_context_weight = nn.Linear(self.counting_num, self.hidden_size)
self.word_convert = nn.Linear(self.hidden_size, self.word_num)
if dropout:
self.dropout = nn.Dropout(dropout_ratio)
def forward(self, cnn_features, labels, counting_preds, images_mask):
if self.is_train:
_, num_steps = labels.shape
else:
num_steps = 36
batch_size, _, height, width = cnn_features.shape
images_mask = images_mask[:, :, :: self.ratio, :: self.ratio]
word_probs = paddle.zeros((batch_size, num_steps, self.word_num))
word_alpha_sum = paddle.zeros((batch_size, 1, height, width))
hidden = self.init_hidden(cnn_features, images_mask)
counting_context_weighted = self.counting_context_weight(counting_preds)
cnn_features_trans = self.encoder_feature_conv(cnn_features)
position_embedding = PositionEmbeddingSine(256, normalize=True)
pos = position_embedding(cnn_features_trans, images_mask[:, 0, :, :])
cnn_features_trans = cnn_features_trans + pos
word = paddle.ones([batch_size, 1], dtype="int64") # init word as sos
word = word.squeeze(axis=1)
for i in range(num_steps):
word_embedding = self.embedding(word)
_, hidden = self.word_input_gru(word_embedding, hidden)
word_context_vec, _, word_alpha_sum = self.word_attention(
cnn_features, cnn_features_trans, hidden, word_alpha_sum, images_mask
)
current_state = self.word_state_weight(hidden)
word_weighted_embedding = self.word_embedding_weight(word_embedding)
word_context_weighted = self.word_context_weight(word_context_vec)
if self.dropout_prob:
word_out_state = self.dropout(
current_state
+ word_weighted_embedding
+ word_context_weighted
+ counting_context_weighted
)
else:
word_out_state = (
current_state
+ word_weighted_embedding
+ word_context_weighted
+ counting_context_weighted
)
word_prob = self.word_convert(word_out_state)
word_probs[:, i] = word_prob
if self.is_train:
word = labels[:, i]
else:
word = word_prob.argmax(1)
word = paddle.multiply(
word, labels[:, i]
) # labels are oneslike tensor in infer/predict mode
return word_probs
def init_hidden(self, features, feature_mask):
average = paddle.sum(
paddle.sum(features * feature_mask, axis=-1), axis=-1
) / paddle.sum((paddle.sum(feature_mask, axis=-1)), axis=-1)
average = self.init_weight(average)
return paddle.tanh(average)
"""
Attention Module
"""
class Attention(nn.Layer):
def __init__(self, hidden_size, attention_dim):
super(Attention, self).__init__()
self.hidden = hidden_size
self.attention_dim = attention_dim
self.hidden_weight = nn.Linear(self.hidden, self.attention_dim)
self.attention_conv = nn.Conv2D(
1, 512, kernel_size=11, padding=5, bias_attr=False
)
self.attention_weight = nn.Linear(512, self.attention_dim, bias_attr=False)
self.alpha_convert = nn.Linear(self.attention_dim, 1)
def forward(
self, cnn_features, cnn_features_trans, hidden, alpha_sum, image_mask=None
):
query = self.hidden_weight(hidden)
alpha_sum_trans = self.attention_conv(alpha_sum)
coverage_alpha = self.attention_weight(
paddle.transpose(alpha_sum_trans, [0, 2, 3, 1])
)
alpha_score = paddle.tanh(
paddle.unsqueeze(query, [1, 2])
+ coverage_alpha
+ paddle.transpose(cnn_features_trans, [0, 2, 3, 1])
)
energy = self.alpha_convert(alpha_score)
energy = energy - energy.max()
energy_exp = paddle.exp(paddle.squeeze(energy, -1))
if image_mask is not None:
energy_exp = energy_exp * paddle.squeeze(image_mask, 1)
alpha = energy_exp / (
paddle.unsqueeze(paddle.sum(paddle.sum(energy_exp, -1), -1), [1, 2]) + 1e-10
)
alpha_sum = paddle.unsqueeze(alpha, 1) + alpha_sum
context_vector = paddle.sum(
paddle.sum((paddle.unsqueeze(alpha, 1) * cnn_features), -1), -1
)
return context_vector, alpha, alpha_sum
class CANHead(nn.Layer):
def __init__(self, in_channel, out_channel, ratio, attdecoder, **kwargs):
super(CANHead, self).__init__()
self.in_channel = in_channel
self.out_channel = out_channel
self.counting_decoder1 = CountingDecoder(
self.in_channel, self.out_channel, 3
) # mscm
self.counting_decoder2 = CountingDecoder(self.in_channel, self.out_channel, 5)
self.decoder = AttDecoder(ratio, **attdecoder)
self.ratio = ratio
def forward(self, inputs, targets=None):
cnn_features, images_mask, labels = inputs
counting_mask = images_mask[:, :, :: self.ratio, :: self.ratio]
counting_preds1, _ = self.counting_decoder1(cnn_features, counting_mask)
counting_preds2, _ = self.counting_decoder2(cnn_features, counting_mask)
counting_preds = (counting_preds1 + counting_preds2) / 2
word_probs = self.decoder(cnn_features, labels, counting_preds, images_mask)
return word_probs, counting_preds, counting_preds1, counting_preds2