DF2K: Combine the DIV2K dataset with the Flickr2K dataset.
Step 1: Download the DF2K dataset and extract it to ./data
.
cd scripts
bash get_df2k_datasets.sh
Step 2: Download the test dataset and extract it to ./data
.
cd scripts
# will download Set5
bash get_test_datasets.sh
Step 3: Crop to sub images.
The main purpose is to reduce the IO consumption of hard drives and speed up training.
python tools/misc/slice_sub_image.py -i datasets/DF2K/DF2K -o datasets/DF2K/DF2K_sub_image_384x384 --crop-size 384 --step 192 --thresh-size 384
If the machine has enough performance, you can increase the number of threads to speed up processing.
python tools/misc/slice_sub_image.py -i datasets/DF2K/DF2K -o datasets/DF2K/DF2K_sub_image_384x384 --crop-size 384 --step 192 --thresh-size 384 --num-workers 32
Step 4: Download the pretrained model weights to ./results/pretrained_models
.
wget https://github.com/Lornatang/Real_ESRGAN-PyTorch/releases/download/0.1.0/realesrnet_x4-df2k_degradation.pkl -O results/pretrained_models/realesrnet_x4-df2k_degradation.pkl
wget https://github.com/Lornatang/Real_ESRGAN-PyTorch/releases/download/0.1.0/realesrgan_x4-df2k_degradation.pkl -O results/pretrained_models/realesrgan_x4-df2k_degradation.pkl
Step 1: Finetune the realesrnet_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrnet_x4-finetune.yaml
# Results will be saved in `./results/train/realesrnet_x4_degradation-finetune`
Step 2: Finetune the realesrgan_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrgan_x4-finetune.yaml
# Results will be saved in `./results/train/realesrgan_x4_degradation-finetune`
Step 1: train the realesrnet_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrnet_x4.yaml
# Results will be saved in `./results/train/realesrnet_x4_degradation`
Step 2: train the realesrgan_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrgan_x4.yaml
# Results will be saved in `./results/train/realesrgan_x4_degradation`
Step 1: Put the training data in the ./data
directory.
The data structure is as follows:
|---datasets
|---custom
|---gt
|---0001.png
|---0002.png
|---...
|---gt_sub_image_384x384
|---0001-0001_0001.png
|---0001-021_0301.png
|---...
Step 2: Crop to sub images.
The main purpose is to reduce the IO consumption of hard drives and speed up training.
python tools/misc/slice_sub_image.py -i datasets/custom/gt -o datasets/custom/gt_sub_image_384x384 --crop-size 384 --step 192 --thresh-size 384
If the machine has enough performance, you can increase the number of threads to speed up processing.
python tools/misc/slice_sub_image.py -i datasets/custom/gt -o datasets/custom/gt_sub_image_384x384 --crop-size 384 --step 192 --thresh-size 384 --num-workers 32
Step 3: Download the test dataset and extract it to ./data
.
cd scripts
# will download Set5
bash get_test_datasets.sh
Step 1: Change realesrnet_x4 yaml.
Find the realesrnet_x4_degradation-finetune.yaml
file in the configs/Real_ESRGAN/realesrnet_x4_degradation-finetune.yaml
directory and follower modify.
# line 48
TRAIN_GT_IMAGES_DIR: "data/custom/gt_sub_image_384x384" # 178574 images
Step 2: Finetune the realesrnet_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrnet_x4-finetune.yaml
# Results will be saved in `./results/train/realesrnet_x4_degradation-finetune`
Step 3: Change realesrgan_x4 yaml.
Find the realesrgan_x4_degradation-finetune.yaml
file in the configs/Real_ESRGAN/realesrgan_x4_degradation-finetune.yaml
directory and follower modify.
# line 48
TRAIN_GT_IMAGES_DIR: "data/custom/gt_sub_image_384x384" # 178574 images
Step 4: Finetune the realesrgan_x4 model.
python tools/train.py configs/Real_ESRGAN/realesrgan_x4-finetune.yaml
# Results will be saved in `./results/train/realesrgan_x4_degradation-finetune`