-
Notifications
You must be signed in to change notification settings - Fork 1
/
separateLeadStereoParam.py
1195 lines (997 loc) · 49.9 KB
/
separateLeadStereoParam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/python
# copyright (C) 2011 Jean-Louis Durrieu
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import numpy as np
import SIMM
#import scikits.audiolab
import scipy
##if (scipy.__version__) < '0.8':
## raise ImportError('Version of scipy is %s, to read wavfile, one needs >= 0.8' %(scipy.__version__))
import scipy.io.wavfile as wav
import os
from tracking import viterbiTrackingArray
import warnings
# SOME USEFUL, INSTRUMENTAL, FUNCTIONS
def db(val):
"""
db(positiveValue)
Returns the decibel value of the input positiveValue
"""
return 10 * np.log10(val)
def nextpow2(i):
"""
Find 2^n that is equal to or greater than.
code taken from the website:
http://www.phys.uu.nl/~haque/computing/WPark_recipes_in_python.html
"""
n = 2
while n < i:
n = n * 2
return n
def ISDistortion(X,Y):
"""
value = ISDistortion(X, Y)
Returns the value of the Itakura-Saito (IS) divergence between
matrix X and matrix Y. X and Y should be two NumPy arrays with
same dimension.
"""
return sum((-np.log(X / Y) + (X / Y) - 1))
# DEFINING SOME WINDOW FUNCTIONS
def sinebell(lengthWindow):
"""
window = sinebell(lengthWindow)
Computes a "sinebell" window function of length L=lengthWindow
The formula is:
window(t) = sin(pi * t / L), t = 0..L-1
"""
window = np.sin((np.pi * (np.arange(lengthWindow))) \
/ (1.0 * lengthWindow))
return window
def hann(args):
"""
window = hann(args)
Computes a Hann window, with NumPy's function hanning(args).
"""
return np.hanning(args)
# FUNCTIONS FOR TIME-FREQUENCY REPRESENTATION
def stft(data, window=sinebell(2048), hopsize=256.0, nfft=2048.0, \
fs=44100.0):
"""
X, F, N = stft(data, window=sinebell(2048), hopsize=1024.0,
nfft=2048.0, fs=44100)
Computes the short time Fourier transform (STFT) of data.
Inputs:
data : one-dimensional time-series to be
analyzed
window=sinebell(2048) : analysis window
hopsize=1024.0 : hopsize for the analysis
nfft=2048.0 : number of points for the Fourier
computation (the user has to provide an
even number)
fs=44100.0 : sampling rate of the signal
Outputs:
X : STFT of data
F : values of frequencies at each Fourier
bins
N : central time at the middle of each
analysis window
"""
# window defines the size of the analysis windows
lengthWindow = window.size
# !!! adding zeros to the beginning of data, such that the first
# window is centered on the first sample of data
data = np.concatenate((np.zeros(lengthWindow / 2.0),data))
lengthData = data.size
# adding one window for the last frame (same reason as for the
# first frame)
numberFrames = np.ceil((lengthData - lengthWindow) / hopsize \
+ 1) + 1
newLengthData = (numberFrames - 1) * hopsize + lengthWindow
# zero-padding data such that it holds an exact number of frames
data = np.concatenate((data, np.zeros([newLengthData - lengthData])))
# the output STFT has nfft/2+1 rows. Note that nfft has to be an
# even number (and a power of 2 for the fft to be fast)
numberFrequencies = nfft / 2.0 + 1
STFT = np.zeros([numberFrequencies, numberFrames], dtype=complex)
for n in np.arange(numberFrames):
beginFrame = n * hopsize
endFrame = beginFrame + lengthWindow
frameToProcess = window * data[beginFrame:endFrame]
STFT[:,n] = np.fft.rfft(frameToProcess, nfft);
F = np.arange(numberFrequencies) / nfft * fs
N = np.arange(numberFrames) * hopsize / fs
return STFT, F, N
def istft(X, window=sinebell(2048), hopsize=256.0, nfft=2048.0):
"""
data = istft(X, window=sinebell(2048), hopsize=256.0, nfft=2048.0)
Computes an inverse of the short time Fourier transform (STFT),
here, the overlap-add procedure is implemented.
Inputs:
X : STFT of the signal, to be "inverted"
window=sinebell(2048) : synthesis window
(should be the "complementary" window
for the analysis window)
hopsize=1024.0 : hopsize for the analysis
nfft=2048.0 : number of points for the Fourier
computation
(the user has to provide an even number)
Outputs:
data : time series corresponding to the given
STFT the first half-window is removed,
complying with the STFT computation
given in the function 'stft'
"""
lengthWindow = np.array(window.size)
numberFrequencies, numberFrames = np.array(X.shape)
lengthData = hopsize * (numberFrames - 1) + lengthWindow
data = np.zeros(lengthData)
for n in np.arange(numberFrames):
beginFrame = n * hopsize
endFrame = beginFrame + lengthWindow
frameTMP = np.fft.irfft(X[:,n], nfft)
frameTMP = frameTMP[:lengthWindow]
data[beginFrame:endFrame] = data[beginFrame:endFrame] \
+ window * frameTMP
# remove the extra bit before data that was - supposedly - added
# in the stft computation:
data = data[(lengthWindow / 2.0):]
return data
# DEFINING THE FUNCTIONS TO CREATE THE 'BASIS' WF0
def generate_WF0_chirped(minF0, maxF0, Fs, Nfft=2048, stepNotes=4, \
lengthWindow=2048, Ot=0.5, perF0=2, \
depthChirpInSemiTone=0.5, loadWF0=True,
analysisWindow='hanning'):
"""
F0Table, WF0 = generate_WF0_chirped(minF0, maxF0, Fs, Nfft=2048,
stepNotes=4, lengthWindow=2048,
Ot=0.5, perF0=2,
depthChirpInSemiTone=0.5)
Generates a 'basis' matrix for the source part WF0, using the
source model KLGLOTT88, with the following I/O arguments:
Inputs:
minF0 the minimum value for the fundamental
frequency (F0)
maxF0 the maximum value for F0
Fs the desired sampling rate
Nfft the number of bins to compute the Fourier
transform
stepNotes the number of F0 per semitone
lengthWindow the size of the window for the Fourier
transform
Ot the glottal opening coefficient for
KLGLOTT88
perF0 the number of chirps considered per F0
value
depthChirpInSemiTone the maximum value, in semitone, of the
allowed chirp per F0
Outputs:
F0Table the vector containing the values of the fundamental
frequencies in Hertz (Hz) corresponding to the
harmonic combs in WF0, i.e. the columns of WF0
WF0 the basis matrix, where each column is a harmonic comb
generated by KLGLOTT88 (with a sinusoidal model, then
transformed into the spectral domain)
"""
# generating a filename to keep data:
filename = str('').join(['wf0_',
'_minF0-', str(minF0),
'_maxF0-', str(maxF0),
'_Fs-', str(Fs),
'_Nfft-', str(Nfft),
'_stepNotes-', str(stepNotes),
'_Ot-', str(Ot),
'_perF0-', str(perF0),
'_depthChirp-', str(depthChirpInSemiTone),
'_analysisWindow-', analysisWindow,
'.npz'])
if os.path.isfile(filename) and loadWF0:
struc = np.load(filename)
return struc['F0Table'], struc['WF0']
# converting to double arrays:
minF0=np.double(minF0)
maxF0=np.double(maxF0)
Fs=np.double(Fs)
stepNotes=np.double(stepNotes)
# computing the F0 table:
numberOfF0 = np.ceil(12.0 * stepNotes * np.log2(maxF0 / minF0)) + 1
F0Table=minF0 * (2 ** (np.arange(numberOfF0,dtype=np.double) \
/ (12 * stepNotes)))
numberElementsInWF0 = numberOfF0 * perF0
# computing the desired WF0 matrix
WF0 = np.zeros([Nfft, numberElementsInWF0],dtype=np.double)
for fundamentalFrequency in np.arange(numberOfF0):
odgd, odgdSpec = \
generate_ODGD_spec(F0Table[fundamentalFrequency], Fs, \
Ot=Ot, lengthOdgd=lengthWindow, \
Nfft=Nfft, t0=0.0,\
analysisWindowType=analysisWindow) # 20100924 trying with hann window
WF0[:,fundamentalFrequency * perF0] = np.abs(odgdSpec) ** 2
for chirpNumber in np.arange(perF0 - 1):
F2 = F0Table[fundamentalFrequency] \
* (2 ** ((chirpNumber + 1.0) * depthChirpInSemiTone \
/ (12.0 * (perF0 - 1.0))))
# F0 is the mean of F1 and F2.
F1 = 2.0 * F0Table[fundamentalFrequency] - F2
odgd, odgdSpec = \
generate_ODGD_spec_chirped(F1, F2, Fs, \
Ot=Ot, \
lengthOdgd=lengthWindow, \
Nfft=Nfft, t0=0.0)
WF0[:,fundamentalFrequency * perF0 + chirpNumber + 1] = \
np.abs(odgdSpec) ** 2
np.savez(filename, F0Table=F0Table, WF0=WF0)
return F0Table, WF0
def generate_ODGD_spec(F0, Fs, lengthOdgd=2048, Nfft=2048, Ot=0.5, \
t0=0.0, analysisWindowType='sinebell'):
"""
generateODGDspec:
generates a waveform ODGD and the corresponding spectrum,
using as analysis window the -optional- window given as
argument.
"""
# converting input to double:
F0 = np.double(F0)
Fs = np.double(Fs)
Ot = np.double(Ot)
t0 = np.double(t0)
# compute analysis window of given type:
if analysisWindowType=='sinebell':
analysisWindow = sinebell(lengthOdgd)
else:
if analysisWindowType=='hanning' or \
analysisWindowType=='hanning':
analysisWindow = hann(lengthOdgd)
# maximum number of partials in the spectral comb:
partialMax = np.floor((Fs / 2) / F0)
# Frequency numbers of the partials:
frequency_numbers = np.arange(1,partialMax + 1)
# intermediate value
temp_array = 1j * 2.0 * np.pi * frequency_numbers * Ot
# compute the amplitudes for each of the frequency peaks:
amplitudes = F0 * 27 / 4 \
* (np.exp(-temp_array) \
+ (2 * (1 + 2 * np.exp(-temp_array)) / temp_array) \
- (6 * (1 - np.exp(-temp_array)) \
/ (temp_array ** 2))) \
/ temp_array
# Time stamps for the time domain ODGD
timeStamps = np.arange(lengthOdgd) / Fs + t0 / F0
# Time domain odgd:
odgd = np.exp(np.outer(2.0 * 1j * np.pi * F0 * frequency_numbers, \
timeStamps)) \
* np.outer(amplitudes, np.ones(lengthOdgd))
odgd = np.sum(odgd, axis=0)
# spectrum:
odgdSpectrum = np.fft.fft(np.real(odgd * analysisWindow), n=Nfft)
return odgd, odgdSpectrum
def generate_ODGD_spec_chirped(F1, F2, Fs, lengthOdgd=2048, Nfft=2048, \
Ot=0.5, t0=0.0, \
analysisWindowType='sinebell'):
"""
generateODGDspecChirped:
generates a waveform ODGD and the corresponding spectrum,
using as analysis window the -optional- window given as
argument.
"""
# converting input to double:
F1 = np.double(F1)
F2 = np.double(F2)
F0 = np.double(F1 + F2) / 2.0
Fs = np.double(Fs)
Ot = np.double(Ot)
t0 = np.double(t0)
# compute analysis window of given type:
if analysisWindowType == 'sinebell':
analysisWindow = sinebell(lengthOdgd)
else:
if analysisWindowType == 'hanning' or \
analysisWindowType == 'hann':
analysisWindow = hann(lengthOdgd)
# maximum number of partials in the spectral comb:
partialMax = np.floor((Fs / 2) / np.max(F1, F2))
# Frequency numbers of the partials:
frequency_numbers = np.arange(1,partialMax + 1)
# intermediate value
temp_array = 1j * 2.0 * np.pi * frequency_numbers * Ot
# compute the amplitudes for each of the frequency peaks:
amplitudes = F0 * 27 / 4 * \
(np.exp(-temp_array) \
+ (2 * (1 + 2 * np.exp(-temp_array)) / temp_array) \
- (6 * (1 - np.exp(-temp_array)) \
/ (temp_array ** 2))) \
/ temp_array
# Time stamps for the time domain ODGD
timeStamps = np.arange(lengthOdgd) / Fs + t0 / F0
# Time domain odgd:
odgd = np.exp(2.0 * 1j * np.pi \
* (np.outer(F1 * frequency_numbers,timeStamps) \
+ np.outer((F2 - F1) \
* frequency_numbers,timeStamps ** 2) \
/ (2 * lengthOdgd / Fs))) \
* np.outer(amplitudes,np.ones(lengthOdgd))
odgd = np.sum(odgd,axis=0)
# spectrum:
odgdSpectrum = np.fft.fft(real(odgd * analysisWindow), n=Nfft)
return odgd, odgdSpectrum
def generateHannBasis(numberFrequencyBins, sizeOfFourier, Fs, \
frequencyScale='linear', numberOfBasis=20, \
overlap=.75):
isScaleRecognized = False
if frequencyScale == 'linear':
# number of windows generated:
numberOfWindowsForUnit = np.ceil(1.0 / (1.0 - overlap))
# recomputing the overlap to exactly fit the entire
# number of windows:
overlap = 1.0 - 1.0 / np.double(numberOfWindowsForUnit)
# length of the sine window - that is also to say: bandwidth
# of the sine window:
lengthSineWindow = np.ceil(numberFrequencyBins \
/ ((1.0 - overlap) \
* (numberOfBasis - 1) + 1 \
- 2.0 * overlap))
# even window length, for convenience:
lengthSineWindow = 2.0 * np.floor(lengthSineWindow / 2.0)
# for later compatibility with other frequency scales:
mappingFrequency = np.arange(numberFrequencyBins)
# size of the "big" window
sizeBigWindow = 2.0 * numberFrequencyBins
# centers for each window
## the first window is centered at, in number of window:
firstWindowCenter = -numberOfWindowsForUnit + 1
## and the last is at
lastWindowCenter = numberOfBasis - numberOfWindowsForUnit + 1
## center positions in number of frequency bins
sineCenters = np.round(\
np.arange(firstWindowCenter, lastWindowCenter) \
* (1 - overlap) * np.double(lengthSineWindow) \
+ lengthSineWindow / 2.0)
# For future purpose: to use different frequency scales
isScaleRecognized = True
# For frequency scale in logarithm (such as ERB scales)
if frequencyScale == 'log':
isScaleRecognized = False
# checking whether the required scale is recognized
if not(isScaleRecognized):
print "The desired feature for frequencyScale is not recognized yet..."
return 0
# the shape of one window:
prototypeSineWindow = hann(lengthSineWindow)
# adding zeroes on both sides, such that we do not need to check
# for boundaries
bigWindow = np.zeros([sizeBigWindow * 2, 1])
bigWindow[(sizeBigWindow - lengthSineWindow / 2.0):\
(sizeBigWindow + lengthSineWindow / 2.0)] \
= np.vstack(prototypeSineWindow)
WGAMMA = np.zeros([numberFrequencyBins, numberOfBasis])
for p in np.arange(numberOfBasis):
WGAMMA[:, p] = np.hstack(bigWindow[np.int32(mappingFrequency \
- sineCenters[p] \
+ sizeBigWindow)])
return WGAMMA
# MAIN FUNCTION, FOR DEFAULT BEHAVIOUR IF THE SCRIPT IS "LAUNCHED"
def main():
import optparse
usage = "usage: %prog [options] inputAudioFile"
parser = optparse.OptionParser(usage)
# Name of the output files:
parser.add_option("-v", "--vocal-output-file",
dest="voc_output_file", type="string",
help="name of the audio output file for the estimated\n"\
"solo (vocal) part. \n"\
"If None, appends _lead to inputAudioFile.",
default=None)
parser.add_option("-m", "--music-output-file",
dest="mus_output_file", type="string",
help="name of the audio output file for the estimated\n"\
"music part.\n"\
"If None, appends _acc to inputAudioFile.",
default=None)
parser.add_option("-p", "--pitch-output-file",
dest="pitch_output_file", type="string",
help="name of the output file for the estimated pitches.\n"
"If None, appends _pitches to inputAudioFile",
default=None)
# Some more optional options:
parser.add_option("-d", "--with-display", dest="displayEvolution",
action="store_true",help="display the figures",
default=False)
parser.add_option("-q", "--quiet", dest="verbose",
action="store_false",
help="use to quiet all output verbose",
default=True)
parser.add_option("-n", "--dontseparate", dest="separateSignals",
action="store_false",
help="Trigger this option if you only desire to "+\
"estimate the melody",
default=True)
parser.add_option("--nb-iterations", dest="nbiter",
help="number of iterations", type="int",
default=30)
parser.add_option("--window-size", dest="windowSize", type="float",
default=0.04644,help="size of analysis windows, in s.")
parser.add_option("--Fourier-size", dest="fourierSize", type="int",
default=None,
help="size of Fourier transforms, "\
"in samples.")
parser.add_option("--hopsize", dest="hopsize", type="float",
default=0.0058,
help="size of the hop between analysis windows, in s.")
parser.add_option("--nb-accElements", dest="R", type="float",
default=40.0,
help="number of elements for the accompaniment.")
parser.add_option("--with-melody", dest="melody", type="string",
default=None,
help="provide the melody in a file named MELODY, "\
"with at each line: <time (s)><F0 (Hz)>.")
parser.add_option("--numAtomFilters", dest="P_numAtomFilters",
type="int", default=30,
help="Number of atomic filters - in WGAMMA.")
parser.add_option("--numFilters", dest="K_numFilters", type="int",
default=10,
help="Number of filters for decomposition - in WPHI")
parser.add_option("--min-F0-Freq", dest="minF0", type="float",
default=100.0,
help="Minimum of fundamental frequency F0.")
parser.add_option("--max-F0-Freq", dest="maxF0", type="float",
default=800.0,
help="Maximum of fundamental frequency F0.")
parser.add_option("--step-F0s", dest="stepNotes", type="int",
default=20,
help="Number of F0s in dictionary for each semitone.")
(options, args) = parser.parse_args()
if len(args) != 1:
parser.error("incorrect number of arguments, use option -h for help.")
displayEvolution = options.displayEvolution
if displayEvolution:
import matplotlib.pyplot as plt
import imageMatlab
## plt.rc('text', usetex=True)
plt.rc('image',cmap='jet') ## gray_r
plt.ion()
# Compulsory option: name of the input file:
inputAudioFile = args[0]
if inputAudioFile[-4:] != ".wav":
raise ValueError("File not WAV file? Only WAV format support, for now...")
if options.mus_output_file is None:
options.mus_output_file = inputAudioFile[:-4]+'_acc.wav'
if options.voc_output_file is None:
options.voc_output_file = inputAudioFile[:-4]+'_lead.wav'
if options.pitch_output_file is None:
options.pitch_output_file = inputAudioFile[:-4]+'_pitches.txt'
print "Writing the different following output files:"
print " separated lead in", options.voc_output_file
print " separated accompaniment in", options.mus_output_file
print " separated lead + unvoc in", options.voc_output_file[:-4] + \
'_VUIMM.wav'
print " separated acc - unvoc in", options.mus_output_file[:-4] + \
'_VUIMM.wav'
print " estimated pitches in", options.pitch_output_file
Fs, data = wav.read(inputAudioFile)
# data = np.double(data) / 32768.0 # makes data vary from -1 to 1
scaleData = 1.2 * data.max() # to rescale the data.
dataType = data.dtype
data = np.double(data) / scaleData # makes data vary from -1 to 1
is_stereo = True
if data.shape[0] == data.size: # data is multi-channel
print "The audio file is not stereo. Making stereo out of mono."
print "(You could also try the older separateLead.py...)"
is_stereo = False
# data = np.vstack([data,data]).T
# raise ValueError("number of dimensions of the input not 2")
if is_stereo and data.shape[1] != 2:
print "The data is multichannel, but not stereo... \n"
print "Unfortunately this program does not scale well. Data is \n"
print "reduced to its 2 first channels.\n"
data = data[:,0:2]
# Processing the options:
windowSizeInSamples = nextpow2(np.round(options.windowSize * Fs))
hopsize = np.round(options.hopsize * Fs)
if hopsize != windowSizeInSamples/8:
#print "Overriding given hopsize to use 1/8th of window size"
#hopsize = windowSizeInSamples/8
warnings.warn("Chosen hopsize: "+str(hopsize)+\
", while windowsize: "+str(windowSizeInSamples))
if options.fourierSize is None:
NFT = windowSizeInSamples
else:
NFT = options.fourierSize
# number of iterations for each parameter estimation step:
niter = options.nbiter
# number of spectral shapes for the accompaniment
R = options.R
eps = 10 ** -9
if options.verbose:
print "Some parameter settings:"
print " Size of analysis windows: ", windowSizeInSamples
print " Hopsize: ", hopsize
print " Size of Fourier transforms: ", NFT
print " Number of iterations to be done: ", niter
print " Number of elements in WM: ", R
if is_stereo:
XR, F, N = stft(data[:,0], fs=Fs, hopsize=hopsize,
window=sinebell(windowSizeInSamples), nfft=NFT)
XL, F, N = stft(data[:,1], fs=Fs, hopsize=hopsize,
window=sinebell(windowSizeInSamples), nfft=NFT)
# SX is the power spectrogram:
## SXR = np.maximum(np.abs(XR) ** 2, 10 ** -8)
## SXL = np.maximum(np.abs(XL) ** 2, 10 ** -8)
#SXR = np.abs(XR) ** 2
#SXL = np.abs(XL) ** 2
SX = np.maximum((0.5*np.abs(XR+XL)) ** 2, eps)
else: # data is mono
X, F, N = stft(data, fs=Fs, hopsize=hopsize,
window=sinebell(windowSizeInSamples), nfft=NFT)
SX = np.maximum(np.abs(X) ** 2, eps)
del data, F, N
# TODO: also process these as options:
# minimum and maximum F0 in glottal source spectra dictionary
minF0 = options.minF0
maxF0 = options.maxF0
F, N = SX.shape
stepNotes = options.stepNotes # this is the number of F0s within one semitone
K = options.K_numFilters # number of spectral shapes for the filter part
P = options.P_numAtomFilters # number of elements in dictionary of smooth filters
chirpPerF0 = 1 # number of chirped spectral shapes between each F0
# this feature should be further studied before
# we find a good way of doing that.
# Create the harmonic combs, for each F0 between minF0 and maxF0:
F0Table, WF0 = \
generate_WF0_chirped(minF0, maxF0, Fs, Nfft=NFT, \
stepNotes=stepNotes, \
lengthWindow=windowSizeInSamples, Ot=0.25, \
perF0=chirpPerF0, \
depthChirpInSemiTone=.15, loadWF0=True,\
analysisWindow='sinebell')
WF0 = WF0[0:F, :] # ensure same size as SX
NF0 = F0Table.size # number of harmonic combs
# Normalization:
WF0 = WF0 / np.outer(np.ones(F), np.amax(WF0, axis=0))
# Create the dictionary of smooth filters, for the filter part of
# the lead isntrument:
WGAMMA = generateHannBasis(F, NFT, Fs=Fs, frequencyScale='linear', \
numberOfBasis=P, overlap=.75)
if displayEvolution:
plt.figure(1);plt.clf()
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.xlabel(r'Frame number $n$', fontsize=16)
plt.ylabel(r'Leading source number $u$', fontsize=16)
plt.ion()
# plt.show()
## the following seems superfluous if mpl's backend is macosx...
## raw_input("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"\
## "!! Press Return to resume the program. !!\n"\
## "!! Be sure that the figure has been !!\n"\
## "!! already displayed, so that the !!\n"\
## "!! evolution of HF0 will be visible. !!\n"\
## "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
if options.melody is None:
## section to estimate the melody, on monophonic algo:
# First round of parameter estimation:
HGAMMA, HPHI, HF0, HM, WM, recoError1 = SIMM.SIMM(
# the data to be fitted to:
SX,
# the basis matrices for the spectral combs
WF0,
# and for the elementary filters:
WGAMMA,
# number of desired filters, accompaniment spectra:
numberOfFilters=K, numberOfAccompanimentSpectralShapes=R,
# putting only 2 elements in accompaniment for a start...
# if any, initial amplitude matrices for
HGAMMA0=None, HPHI0=None,
HF00=None,
WM0=None, HM0=None,
# Some more optional arguments, to control the "convergence"
# of the algo
numberOfIterations=niter, updateRulePower=1.,
stepNotes=stepNotes,
lambdaHF0 = 0.0 / (1.0 * SX.max()), alphaHF0=0.9,
verbose=options.verbose, displayEvolution=displayEvolution)
if displayEvolution:
h2 = plt.figure(2);plt.clf();
imageMatlab.imageM(20 * np.log10(HF0))
matMax = (20 * np.log10(HF0)).max()
matMed = np.median(20 * np.log10(HF0))
plt.clim([matMed - 100, matMax])
# Viterbi decoding to estimate the predominant fundamental
# frequency line
# create transition probability matrix - adhoc parameter 'scale'
# TODO: use "learned" parameter scale (NB: after many trials,
# provided scale and parameterization seems robust)
scale = 1.0
transitions = np.exp(-np.floor(np.arange(0,NF0) / stepNotes) * scale)
cutoffnote = 2 * 5 * stepNotes
transitions[cutoffnote:] = transitions[cutoffnote - 1]
transitionMatrixF0 = np.zeros([NF0 + 1, NF0 + 1]) # toeplitz matrix
b = np.arange(NF0)
transitionMatrixF0[0:NF0, 0:NF0] = \
transitions[\
np.array(np.abs(np.outer(np.ones(NF0), b) \
- np.outer(b, np.ones(NF0))), dtype=int)]
pf_0 = transitions[cutoffnote - 1] * 10 ** (-90)
p0_0 = transitions[cutoffnote - 1] * 10 ** (-100)
p0_f = transitions[cutoffnote - 1] * 10 ** (-80)
transitionMatrixF0[0:NF0, NF0] = pf_0
transitionMatrixF0[NF0, 0:NF0] = p0_f
transitionMatrixF0[NF0, NF0] = p0_0
sumTransitionMatrixF0 = np.sum(transitionMatrixF0, axis=1)
transitionMatrixF0 = transitionMatrixF0 \
/ np.outer(sumTransitionMatrixF0, \
np.ones(NF0 + 1))
# prior probabilities, and setting the array for Viterbi tracking:
priorProbabilities = 1 / (NF0 + 1.0) * np.ones([NF0 + 1])
logHF0 = np.zeros([NF0 + 1, N])
normHF0 = np.amax(HF0, axis=0)
barHF0 = np.array(HF0)
logHF0[0:NF0, :] = np.log(barHF0)
logHF0[0:NF0, normHF0==0] = np.amin(logHF0[logHF0>-np.Inf])
logHF0[NF0, :] = np.maximum(np.amin(logHF0[logHF0>-np.Inf]),-100)
indexBestPath = viterbiTrackingArray(\
logHF0, np.log(priorProbabilities),
np.log(transitionMatrixF0), verbose=options.verbose)
if displayEvolution:
h2.hold(True)
plt.plot(indexBestPath, '-b')
h2.hold(False)
plt.axis('tight')
del logHF0
# detection of silences:
# computing the melody restricted F0 amplitude matrix HF00
# (which will be used as initial HF0 for further algo):
HF00 = np.zeros([NF0 * chirpPerF0, N])
scopeAllowedHF0 = 2.0 / 1.0
# computing indices for and around the melody indices,
# dim1index are indices along axis 0, and dim2index along axis 1
# of HF0:
# TODO: use numpy broadcasting to make this "clearer" (if possible...)
dim1index = np.array(\
np.maximum(\
np.minimum(\
np.outer(chirpPerF0 * indexBestPath,
np.ones(chirpPerF0 \
* (2 \
* np.floor(stepNotes / scopeAllowedHF0) \
+ 1))) \
+ np.outer(np.ones(N),
np.arange(-chirpPerF0 \
* np.floor(stepNotes / scopeAllowedHF0),
chirpPerF0 \
* (np.floor(stepNotes / scopeAllowedHF0) \
+ 1))),
chirpPerF0 * NF0 - 1),
0),
dtype=int).reshape(1, N * chirpPerF0 \
* (2 * np.floor(stepNotes / scopeAllowedHF0) \
+ 1))
dim2index = np.outer(np.arange(N),
np.ones(chirpPerF0 \
* (2 * np.floor(stepNotes \
/ scopeAllowedHF0) + 1), \
dtype=int)\
).reshape(1, N * chirpPerF0 \
* (2 * np.floor(stepNotes \
/ scopeAllowedHF0) \
+ 1))
HF00[dim1index, dim2index] = HF0[dim1index, dim2index]# HF0.max()
HF00[:, indexBestPath == (NF0 - 1)] = 0.0
HF00[:, indexBestPath == 0] = 0.0
# remove frames with less than (100 thres_energy) % of total energy.
thres_energy = 0.000584
SF0 = np.maximum(np.dot(WF0, HF00), eps)
SPHI = np.maximum(np.dot(WGAMMA, np.dot(HGAMMA, HPHI)), eps)
SM = np.maximum(np.dot(WM, HM), eps)
hatSX = np.maximum(SPHI * SF0 + SM, eps)
energyMel = np.sum((((SPHI * SF0)/hatSX)**2) * SX, axis=0)
energyMelSorted = np.sort(energyMel)
energyMelCumul = np.cumsum(energyMelSorted)
energyMelCumulNorm = energyMelCumul / max(energyMelCumul[-1], eps)
# normalized to the maximum of energy:
# expressed in 0.01 times the percentage
ind_999 = np.nonzero(energyMelCumulNorm>thres_energy)[0][0]
if ind_999 is None:
ind_999 = N
melNotPresent = (energyMel <= energyMelCumulNorm[ind_999])
indexBestPath[melNotPresent] = 0
else:
## take the provided melody line:
# load melody from file:
melodyFromFile = np.loadtxt(options.melody)
sizeProvidedMel = melodyFromFile.shape
if len(sizeProvidedMel) == 1:
print "The melody should be provided as <Time (s)><F0 (Hz)>."
raise ValueError("Bad melody format")
melTimeStamps = melodyFromFile[:,0] # + 1024 / np.double(Fs)
melFreqHz = melodyFromFile[:,1]
if minF0 > melFreqHz[melFreqHz>40.0].min() or maxF0 < melFreqHz.max():
minF0 = melFreqHz[melFreqHz>40.0].min() *.97
maxF0 = np.maximum(melFreqHz.max()*1.03, 2*minF0 * 1.03)
print "Recomputing the source basis for "
print "minF0 = ", minF0, "Hz and maxF0 = ", maxF0, "Hz."
# Create the harmonic combs, for each F0 between minF0 and maxF0:
F0Table, WF0 = \
generate_WF0_chirped(minF0, maxF0, Fs, Nfft=NFT, \
stepNotes=stepNotes, \
lengthWindow=windowSizeInSamples,
Ot=0.25, \
perF0=chirpPerF0, \
depthChirpInSemiTone=.15)
WF0 = WF0[0:F, :] # ensure same size as SX
NF0 = F0Table.size # number of harmonic combs
# Normalization:
WF0 = WF0 / np.outer(np.ones(F), np.amax(WF0, axis=0))
sigTimeStamps = np.arange(N) * hopsize / np.double(Fs)
distMatTimeStamps = np.abs(np.outer(np.ones(sizeProvidedMel[0]),
sigTimeStamps) -
np.outer(melTimeStamps, np.ones(N)))
minDistTimeStamps = distMatTimeStamps.argmin(axis=0)
f0BestPath = melFreqHz[minDistTimeStamps]
distMatF0 = np.abs(np.outer(np.ones(NF0), f0BestPath) -
np.outer(F0Table, np.ones(N)))
indexBestPath = distMatF0.argmin(axis=0)
# setting silences to 0, with tolerance = 1/2 window length
indexBestPath[distMatTimeStamps[minDistTimeStamps,range(N)] >= \
0.5 * options.windowSize] = 0
indexBestPath[f0BestPath<=0] = 0
freqMelody = F0Table[np.array(indexBestPath,dtype=int)]
freqMelody[indexBestPath==0] = - freqMelody[indexBestPath==0]
np.savetxt(options.pitch_output_file,
np.array([np.arange(N) * hopsize / np.double(Fs),
freqMelody]).T)
# If separation is required:
if options.separateSignals:
# Second round of parameter estimation, with specific
# initial HF00:
HF00 = np.zeros([NF0 * chirpPerF0, N])
scopeAllowedHF0 = 2.0 / 1.0
# indexes for HF00:
# TODO: reprogram this with a 'where'?...
dim1index = np.array(\
np.maximum(\
np.minimum(\
np.outer(chirpPerF0 * indexBestPath,
np.ones(chirpPerF0 \
* (2 \
* np.floor(stepNotes / scopeAllowedHF0) \
+ 1))) \
+ np.outer(np.ones(N),
np.arange(-chirpPerF0 \
* np.floor(stepNotes / scopeAllowedHF0),
chirpPerF0 \
* (np.floor(stepNotes / scopeAllowedHF0) \
+ 1))),
chirpPerF0 * NF0 - 1),
0),
dtype=int)
dim1index = dim1index[indexBestPath!=0,:]
## dim1index = dim1index.reshape(1, N * chirpPerF0 \
## * (2 * np.floor(stepNotes / scopeAllowedHF0) \
## + 1))
dim1index = dim1index.reshape(1,dim1index.size)
dim2index = np.outer(np.arange(N),
np.ones(chirpPerF0 \
* (2 * np.floor(stepNotes \
/ scopeAllowedHF0) + 1), \
dtype=int)\
)
dim2index = dim2index[indexBestPath!=0,:]
dim2index = dim2index.reshape(1,dim2index.size)
## dim2index.reshape(1, N * chirpPerF0 \
## * (2 * np.floor(stepNotes \
## / scopeAllowedHF0) \
## + 1))
HF00[dim1index, dim2index] = 1 # HF0.max()
HF00[:, indexBestPath == (NF0 - 1)] = 0.0
HF00[:, indexBestPath == 0] = 0.0
WF0effective = WF0
HF00effective = HF00
if options.melody is None:
del HF0, HGAMMA, HPHI, HM, WM, HF00
if is_stereo:
del SX
SXR = np.maximum(np.abs(XR) ** 2, eps)
SXL = np.maximum(np.abs(XL) ** 2, eps)
alphaR, alphaL, HGAMMA, HPHI, HF0, \
betaR, betaL, HM, WM, recoError2 = SIMM.Stereo_SIMM(
# the data to be fitted to:
SXR, SXL,
# the basis matrices for the spectral combs
WF0effective,
# and for the elementary filters:
WGAMMA,
# number of desired filters, accompaniment spectra:
numberOfFilters=K, numberOfAccompanimentSpectralShapes=R,
# if any, initial amplitude matrices for
HGAMMA0=None, HPHI0=None,
HF00=HF00effective,
WM0=None, HM0=None,
# Some more optional arguments, to control the "convergence"
# of the algo
numberOfIterations=niter, updateRulePower=1.0,
stepNotes=stepNotes,
lambdaHF0 = 0.0 / (1.0 * SXR.max()), alphaHF0=0.9,
verbose=options.verbose, displayEvolution=displayEvolution)
WPHI = np.dot(WGAMMA, HGAMMA)
SPHI = np.dot(WPHI, HPHI)
SF0 = np.dot(WF0effective, HF0)
hatSXR = (alphaR**2) * SF0 * SPHI + np.dot(np.dot(WM, betaR**2),HM)
hatSXL = (alphaL**2) * SF0 * SPHI + np.dot(np.dot(WM, betaL**2),HM)
hatVR = (alphaR**2) * SPHI * SF0 / hatSXR * XR
vestR = istft(hatVR, hopsize=hopsize, nfft=NFT,
window=sinebell(windowSizeInSamples)) / 4.0
hatVR = (alphaL**2) * SPHI * SF0 / hatSXL * XL
vestL = istft(hatVR, hopsize=hopsize, nfft=NFT,
window=sinebell(windowSizeInSamples)) / 4.0
#scikits.audiolab.wavwrite(np.array([vestR,vestL]).T, \
# options.voc_output_file, Fs)
vestR = np.array(np.round(vestR*scaleData), dtype=dataType)
vestL = np.array(np.round(vestL*scaleData), dtype=dataType)
wav.write(options.voc_output_file, Fs, \
np.array([vestR,vestL]).T)
#wav.write(options.voc_output_file, Fs, \
# np.int16(32768.0 * np.array([vestR,vestL]).T))
hatMR = (np.dot(np.dot(WM,betaR ** 2),HM)) / hatSXR * XR
mestR = istft(hatMR, hopsize=hopsize, nfft=NFT,
window=sinebell(windowSizeInSamples)) / 4.0