forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
byol_experiment.py
533 lines (451 loc) · 18.4 KB
/
byol_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BYOL pre-training implementation.
Use this experiment to pre-train a self-supervised representation.
"""
import functools
from typing import Any, Generator, Mapping, NamedTuple, Text, Tuple, Union
from absl import logging
from acme.jax import utils as acme_utils
import haiku as hk
import jax
import jax.numpy as jnp
import numpy as np
import optax
from byol.utils import augmentations
from byol.utils import checkpointing
from byol.utils import dataset
from byol.utils import helpers
from byol.utils import networks
from byol.utils import optimizers
from byol.utils import schedules
# Type declarations.
LogsDict = Mapping[Text, jnp.ndarray]
class _ByolExperimentState(NamedTuple):
"""Byol's model and optimization parameters and state."""
online_params: hk.Params
target_params: hk.Params
online_state: hk.State
target_state: hk.State
opt_state: optimizers.LarsState
class ByolExperiment:
"""Byol's training and evaluation component definition."""
def __init__(
self,
random_seed: int,
num_classes: int,
batch_size: int,
max_steps: int,
enable_double_transpose: bool,
base_target_ema: float,
network_config: Mapping[Text, Any],
optimizer_config: Mapping[Text, Any],
lr_schedule_config: Mapping[Text, Any],
evaluation_config: Mapping[Text, Any],
checkpointing_config: Mapping[Text, Any]):
"""Constructs the experiment.
Args:
random_seed: the random seed to use when initializing network weights.
num_classes: the number of classes; used for the online evaluation.
batch_size: the total batch size; should be a multiple of the number of
available accelerators.
max_steps: the number of training steps; used for the lr/target network
ema schedules.
enable_double_transpose: see dataset.py; only has effect on TPU.
base_target_ema: the initial value for the ema decay rate of the target
network.
network_config: the configuration for the network.
optimizer_config: the configuration for the optimizer.
lr_schedule_config: the configuration for the learning rate schedule.
evaluation_config: the evaluation configuration.
checkpointing_config: the configuration for checkpointing.
"""
self._random_seed = random_seed
self._enable_double_transpose = enable_double_transpose
self._num_classes = num_classes
self._lr_schedule_config = lr_schedule_config
self._batch_size = batch_size
self._max_steps = max_steps
self._base_target_ema = base_target_ema
self._optimizer_config = optimizer_config
self._evaluation_config = evaluation_config
# Checkpointed experiment state.
self._byol_state = None
# Input pipelines.
self._train_input = None
self._eval_input = None
# build the transformed ops
forward_fn = functools.partial(self._forward, **network_config)
self.forward = hk.without_apply_rng(hk.transform_with_state(forward_fn))
# training can handle multiple devices, thus the pmap
self.update_pmap = jax.pmap(self._update_fn, axis_name='i')
# evaluation can only handle single device
self.eval_batch_jit = jax.jit(self._eval_batch)
self._checkpointer = checkpointing.Checkpointer(**checkpointing_config)
def _forward(
self,
inputs: dataset.Batch,
projector_hidden_size: int,
projector_output_size: int,
predictor_hidden_size: int,
encoder_class: Text,
encoder_config: Mapping[Text, Any],
bn_config: Mapping[Text, Any],
is_training: bool,
) -> Mapping[Text, jnp.ndarray]:
"""Forward application of byol's architecture.
Args:
inputs: A batch of data, i.e. a dictionary, with either two keys,
(`images` and `labels`) or three keys (`view1`, `view2`, `labels`).
projector_hidden_size: hidden size of the projector MLP.
projector_output_size: output size of the projector and predictor MLPs.
predictor_hidden_size: hidden size of the predictor MLP.
encoder_class: type of the encoder (should match a class in
utils/networks).
encoder_config: passed to the encoder constructor.
bn_config: passed to the hk.BatchNorm constructors.
is_training: Training or evaluating the model? When True, inputs must
contain keys `view1` and `view2`. When False, inputs must contain key
`images`.
Returns:
All outputs of the model, i.e. a dictionary with projection, prediction
and logits keys, for either the two views, or the image.
"""
encoder = getattr(networks, encoder_class)
net = encoder(
num_classes=None, # Don't build the final linear layer
bn_config=bn_config,
**encoder_config)
projector = networks.MLP(
name='projector',
hidden_size=projector_hidden_size,
output_size=projector_output_size,
bn_config=bn_config)
predictor = networks.MLP(
name='predictor',
hidden_size=predictor_hidden_size,
output_size=projector_output_size,
bn_config=bn_config)
classifier = hk.Linear(
output_size=self._num_classes, name='classifier')
def apply_once_fn(images: jnp.ndarray, suffix: Text = ''):
images = dataset.normalize_images(images)
embedding = net(images, is_training=is_training)
proj_out = projector(embedding, is_training)
pred_out = predictor(proj_out, is_training)
# Note the stop_gradient: label information is not leaked into the
# main network.
classif_out = classifier(jax.lax.stop_gradient(embedding))
outputs = {}
outputs['projection' + suffix] = proj_out
outputs['prediction' + suffix] = pred_out
outputs['logits' + suffix] = classif_out
return outputs
if is_training:
outputs_view1 = apply_once_fn(inputs['view1'], '_view1')
outputs_view2 = apply_once_fn(inputs['view2'], '_view2')
return {**outputs_view1, **outputs_view2}
else:
return apply_once_fn(inputs['images'], '')
def _optimizer(self, learning_rate: float) -> optax.GradientTransformation:
"""Build optimizer from config."""
return optimizers.lars(
learning_rate,
weight_decay_filter=optimizers.exclude_bias_and_norm,
lars_adaptation_filter=optimizers.exclude_bias_and_norm,
**self._optimizer_config)
def loss_fn(
self,
online_params: hk.Params,
target_params: hk.Params,
online_state: hk.State,
target_state: hk.Params,
rng: jnp.ndarray,
inputs: dataset.Batch,
) -> Tuple[jnp.ndarray, Tuple[Mapping[Text, hk.State], LogsDict]]:
"""Compute BYOL's loss function.
Args:
online_params: parameters of the online network (the loss is later
differentiated with respect to the online parameters).
target_params: parameters of the target network.
online_state: internal state of online network.
target_state: internal state of target network.
rng: random number generator state.
inputs: inputs, containing two batches of crops from the same images,
view1 and view2 and labels
Returns:
BYOL's loss, a mapping containing the online and target networks updated
states after processing inputs, and various logs.
"""
if self._should_transpose_images():
inputs = dataset.transpose_images(inputs)
inputs = augmentations.postprocess(inputs, rng)
labels = inputs['labels']
online_network_out, online_state = self.forward.apply(
params=online_params,
state=online_state,
inputs=inputs,
is_training=True)
target_network_out, target_state = self.forward.apply(
params=target_params,
state=target_state,
inputs=inputs,
is_training=True)
# Representation loss
# The stop_gradient is not necessary as we explicitly take the gradient with
# respect to online parameters only in `optax.apply_updates`. We leave it to
# indicate that gradients are not backpropagated through the target network.
repr_loss = helpers.regression_loss(
online_network_out['prediction_view1'],
jax.lax.stop_gradient(target_network_out['projection_view2']))
repr_loss = repr_loss + helpers.regression_loss(
online_network_out['prediction_view2'],
jax.lax.stop_gradient(target_network_out['projection_view1']))
repr_loss = jnp.mean(repr_loss)
# Classification loss (with gradient flows stopped from flowing into the
# ResNet). This is used to provide an evaluation of the representation
# quality during training.
classif_loss = helpers.softmax_cross_entropy(
logits=online_network_out['logits_view1'],
labels=jax.nn.one_hot(labels, self._num_classes))
top1_correct = helpers.topk_accuracy(
online_network_out['logits_view1'],
inputs['labels'],
topk=1,
)
top5_correct = helpers.topk_accuracy(
online_network_out['logits_view1'],
inputs['labels'],
topk=5,
)
top1_acc = jnp.mean(top1_correct)
top5_acc = jnp.mean(top5_correct)
classif_loss = jnp.mean(classif_loss)
loss = repr_loss + classif_loss
logs = dict(
loss=loss,
repr_loss=repr_loss,
classif_loss=classif_loss,
top1_accuracy=top1_acc,
top5_accuracy=top5_acc,
)
return loss, (dict(online_state=online_state,
target_state=target_state), logs)
def _should_transpose_images(self):
"""Should we transpose images (saves host-to-device time on TPUs)."""
return (self._enable_double_transpose and
jax.local_devices()[0].platform == 'tpu')
def _update_fn(
self,
byol_state: _ByolExperimentState,
global_step: jnp.ndarray,
rng: jnp.ndarray,
inputs: dataset.Batch,
) -> Tuple[_ByolExperimentState, LogsDict]:
"""Update online and target parameters.
Args:
byol_state: current BYOL state.
global_step: current training step.
rng: current random number generator
inputs: inputs, containing two batches of crops from the same images,
view1 and view2 and labels
Returns:
Tuple containing the updated Byol state after processing the inputs, and
various logs.
"""
online_params = byol_state.online_params
target_params = byol_state.target_params
online_state = byol_state.online_state
target_state = byol_state.target_state
opt_state = byol_state.opt_state
# update online network
grad_fn = jax.grad(self.loss_fn, argnums=0, has_aux=True)
grads, (net_states, logs) = grad_fn(online_params, target_params,
online_state, target_state, rng, inputs)
# cross-device grad and logs reductions
grads = jax.tree_map(lambda v: jax.lax.pmean(v, axis_name='i'), grads)
logs = jax.tree_multimap(lambda x: jax.lax.pmean(x, axis_name='i'), logs)
learning_rate = schedules.learning_schedule(
global_step,
batch_size=self._batch_size,
total_steps=self._max_steps,
**self._lr_schedule_config)
updates, opt_state = self._optimizer(learning_rate).update(
grads, opt_state, online_params)
online_params = optax.apply_updates(online_params, updates)
# update target network
tau = schedules.target_ema(
global_step,
base_ema=self._base_target_ema,
max_steps=self._max_steps)
target_params = jax.tree_multimap(lambda x, y: x + (1 - tau) * (y - x),
target_params, online_params)
logs['tau'] = tau
logs['learning_rate'] = learning_rate
return _ByolExperimentState(
online_params=online_params,
target_params=target_params,
online_state=net_states['online_state'],
target_state=net_states['target_state'],
opt_state=opt_state), logs
def _make_initial_state(
self,
rng: jnp.ndarray,
dummy_input: dataset.Batch,
) -> _ByolExperimentState:
"""BYOL's _ByolExperimentState initialization.
Args:
rng: random number generator used to initialize parameters. If working in
a multi device setup, this need to be a ShardedArray.
dummy_input: a dummy image, used to compute intermediate outputs shapes.
Returns:
Initial Byol state.
"""
rng_online, rng_target = jax.random.split(rng)
if self._should_transpose_images():
dummy_input = dataset.transpose_images(dummy_input)
# Online and target parameters are initialized using different rngs,
# in our experiments we did not notice a significant different with using
# the same rng for both.
online_params, online_state = self.forward.init(
rng_online,
dummy_input,
is_training=True,
)
target_params, target_state = self.forward.init(
rng_target,
dummy_input,
is_training=True,
)
opt_state = self._optimizer(0).init(online_params)
return _ByolExperimentState(
online_params=online_params,
target_params=target_params,
opt_state=opt_state,
online_state=online_state,
target_state=target_state,
)
def step(self, *,
global_step: jnp.ndarray,
rng: jnp.ndarray) -> Mapping[Text, np.ndarray]:
"""Performs a single training step."""
if self._train_input is None:
self._initialize_train()
inputs = next(self._train_input)
self._byol_state, scalars = self.update_pmap(
self._byol_state,
global_step=global_step,
rng=rng,
inputs=inputs,
)
return helpers.get_first(scalars)
def save_checkpoint(self, step: int, rng: jnp.ndarray):
self._checkpointer.maybe_save_checkpoint(
self._byol_state, step=step, rng=rng, is_final=step >= self._max_steps)
def load_checkpoint(self) -> Union[Tuple[int, jnp.ndarray], None]:
checkpoint_data = self._checkpointer.maybe_load_checkpoint()
if checkpoint_data is None:
return None
self._byol_state, step, rng = checkpoint_data
return step, rng
def _initialize_train(self):
"""Initialize train.
This includes initializing the input pipeline and Byol's state.
"""
self._train_input = acme_utils.prefetch(self._build_train_input())
# Check we haven't already restored params
if self._byol_state is None:
logging.info(
'Initializing parameters rather than restoring from checkpoint.')
# initialize Byol and setup optimizer state
inputs = next(self._train_input)
init_byol = jax.pmap(self._make_initial_state, axis_name='i')
# Init uses the same RNG key on all hosts+devices to ensure everyone
# computes the same initial state and parameters.
init_rng = jax.random.PRNGKey(self._random_seed)
init_rng = helpers.bcast_local_devices(init_rng)
self._byol_state = init_byol(rng=init_rng, dummy_input=inputs)
def _build_train_input(self) -> Generator[dataset.Batch, None, None]:
"""Loads the (infinitely looping) dataset iterator."""
num_devices = jax.device_count()
global_batch_size = self._batch_size
per_device_batch_size, ragged = divmod(global_batch_size, num_devices)
if ragged:
raise ValueError(
f'Global batch size {global_batch_size} must be divisible by '
f'num devices {num_devices}')
return dataset.load(
dataset.Split.TRAIN_AND_VALID,
preprocess_mode=dataset.PreprocessMode.PRETRAIN,
transpose=self._should_transpose_images(),
batch_dims=[jax.local_device_count(), per_device_batch_size])
def _eval_batch(
self,
params: hk.Params,
state: hk.State,
batch: dataset.Batch,
) -> Mapping[Text, jnp.ndarray]:
"""Evaluates a batch.
Args:
params: Parameters of the model to evaluate. Typically Byol's online
parameters.
state: State of the model to evaluate. Typically Byol's online state.
batch: Batch of data to evaluate (must contain keys images and labels).
Returns:
Unreduced evaluation loss and top1 accuracy on the batch.
"""
if self._should_transpose_images():
batch = dataset.transpose_images(batch)
outputs, _ = self.forward.apply(params, state, batch, is_training=False)
logits = outputs['logits']
labels = hk.one_hot(batch['labels'], self._num_classes)
loss = helpers.softmax_cross_entropy(logits, labels, reduction=None)
top1_correct = helpers.topk_accuracy(logits, batch['labels'], topk=1)
top5_correct = helpers.topk_accuracy(logits, batch['labels'], topk=5)
# NOTE: Returned values will be summed and finally divided by num_samples.
return {
'eval_loss': loss,
'top1_accuracy': top1_correct,
'top5_accuracy': top5_correct,
}
def _eval_epoch(self, subset: Text, batch_size: int):
"""Evaluates an epoch."""
num_samples = 0.
summed_scalars = None
params = helpers.get_first(self._byol_state.online_params)
state = helpers.get_first(self._byol_state.online_state)
split = dataset.Split.from_string(subset)
dataset_iterator = dataset.load(
split,
preprocess_mode=dataset.PreprocessMode.EVAL,
transpose=self._should_transpose_images(),
batch_dims=[batch_size])
for inputs in dataset_iterator:
num_samples += inputs['labels'].shape[0]
scalars = self.eval_batch_jit(params, state, inputs)
# Accumulate the sum of scalars for each step.
scalars = jax.tree_map(lambda x: jnp.sum(x, axis=0), scalars)
if summed_scalars is None:
summed_scalars = scalars
else:
summed_scalars = jax.tree_multimap(jnp.add, summed_scalars, scalars)
mean_scalars = jax.tree_map(lambda x: x / num_samples, summed_scalars)
return mean_scalars
def evaluate(self, global_step, **unused_args):
"""Thin wrapper around _eval_epoch."""
global_step = np.array(helpers.get_first(global_step))
scalars = jax.device_get(self._eval_epoch(**self._evaluation_config))
logging.info('[Step %d] Eval scalars: %s', global_step, scalars)
return scalars