-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_generate.py
73 lines (56 loc) · 3.05 KB
/
run_generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import os
import random
import torch
import numpy as np
from config import get_generate_args, get_paths
from model import Generator
from datautils.dataloader import load_code_name_map, load_meta_data
from datautils.dataset import DatasetReal
from generation.generate import generate_ehr, get_required_number
from generation.stat_ehr import get_basic_statistics, get_top_k_disease, calc_distance
def generate(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dataset_path, _, params_path = get_paths(args)
len_dist, _, _, _, code_map = load_meta_data(dataset_path)
code_name_map = load_code_name_map(args.data_path)
icode_map = {v: k for k, v in code_map.items()}
code_num = len(code_map)
dataset_real = DatasetReal(os.path.join(dataset_path, 'standard', 'real_data'))
len_dist = torch.from_numpy(len_dist).to(device)
max_len = dataset_real.train_set.data[0].shape[1]
if args.use_iteration == -1:
param_file_name = 'generator.pt'
else:
param_file_name = 'generator.{}.pt'.format(args.use_iteration)
generator = Generator(code_num=code_num,
hidden_dim=args.g_hidden_dim,
attention_dim=args.g_attention_dim,
max_len=max_len,
device=device).to(device)
generator.load(params_path, param_file_name)
fake_x, fake_lens = generate_ehr(generator, args.number, len_dist, args.batch_size)
"""------------------------get statistics------------------------"""
real_x, real_lens = dataset_real.train_set.data
print('real data')
n_types, n_codes, n_visits, avg_code_num, avg_visit_num = get_basic_statistics(real_x, real_lens)
print('{} samples -- code types: {} -- code num: {} -- avg code num: {:.4f}, avg visit len: {:.4f}'
.format(args.number, n_types, n_codes, avg_code_num, avg_visit_num))
get_top_k_disease(real_x, real_lens, icode_map, code_name_map, top_k=10)
print('fake data')
n_types, n_codes, n_visits, avg_code_num, avg_visit_num = get_basic_statistics(fake_x, fake_lens)
print('{} samples -- code types: {} -- code num: {} -- avg code num: {:.4f}, avg visit len: {:.4f}'
.format(args.number, n_types, n_codes, avg_code_num, avg_visit_num))
get_top_k_disease(fake_x, fake_lens, icode_map, code_name_map, top_k=10)
jsd_v, jsd_p, nd_v, nd_p = calc_distance(real_x, real_lens, fake_x, fake_lens, code_num)
print('JSD_v: {:.4f}, JSD_p: {:.4f}, ND_v: {:.4f}, ND_p: {:.4f}'.format(jsd_v, jsd_p, nd_v, nd_p))
"""------------------------get statistics------------------------"""
get_required_number(generator, len_dist, args.batch_size, args.upper_bound)
print('saving {} synthetic data...'.format(args.number))
synthetic_path = os.path.join(args.result_path, 'synthetic_{}.npz'.format(args.dataset))
np.savez_compressed(synthetic_path, x=fake_x, lens=fake_lens)
if __name__ == '__main__':
args = get_generate_args()
generate(args)